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Abstract—This paper presents CoopREP, a system that
provides support for fault replication of concurrent programs,
based on cooperative recording and partial log combination.
CoopREP employs partial recording to reduce the amount
of information that a given program instance is required to
store in order to support deterministic replay. This allows
to substantially reduce the overhead imposed by the instru-
mentation of the code, but raises the problem of finding the
combination of logs capable of replaying the fault. CoopREP
tackles this issue by introducing several innovative statistical
analysis techniques aimed at guiding the search of partial
logs to be combined and used during the replay phase.
CoopREP has been evaluated using both standard benchmarks
for multi-threaded applications and a real-world application.
The results highlight that CoopREP can successfully replay
concurrency bugs involving tens of thousands of memory
accesses, reducing logging overhead with respect to state of
the art non-cooperative logging schemes by up to 50 times in
computationally intensive applications.

Keywords-concurrency errors; deterministic replay; debug-
ging; performance

I. INTRODUCTION

Software bugs continue to hamper the reliability of soft-
ware. It is estimated that bugs account for 40% of system
failures [1]. Unfortunately, despite the progress made on
the development of techniques that prevent and correct
errors during software production (e.g. formal methods [2]),
a significant number of errors still reaches production [3].
This problem is exacerbated by the advent of multi-core
systems and the increasing complexity of modern software.
Therefore, it is imperative to develop tools that simplify the
task of debugging the software, for instance, by providing
the means to replay a faulty execution.

A fundamental challenge is that achieving deterministic
replay is far from trivial, especially in parallel applications.
Contrary to most bugs in sequential program, that usually de-
pend exclusively on the program input and on the execution
environment (and therefore can be more easily reproduced),
concurrency bugs have an inherently non-deterministic na-
ture. This means that even when re-executing the same code
with identical inputs, on the same machine, the program
outcome may be differ from run to run [4].

The deterministic replay technique addresses this prob-
lem by recording the relevant details of the execution [5]
(including the order of access to shared memory regions,
thread scheduling, program inputs, signals, etc) to support
the reproduction of the original run. However, logging all the

required information induces a large space and performance
overhead during production runs.

In the past decade, a significant amount of research
has been performed on techniques to provide deterministic
replay (either based on hardware or software). Several of
these solutions [6], [7], [8], [9] aim at replaying the bug
on the first attempt, but this comes at an excessively high
cost on the original run (10x-100x slowdown), making the
approach impractical in most settings.

Since the most significant performance constraints are on
the production version, it becomes of paramount importance
to reduce its instrumentation overhead, even if it results in
a slightly longer reproduction time during diagnosis.

In this paper we introduce and evaluate the idea of
exploiting the coexistence of multiple instances of the same
program to devise cooperative logging schemes. The under-
lying intuition is very simple: sharing the burden of logging
among multiple instances of the same (buggy) program, by
having each instance track accesses that only target a subset
of the program’s shared variables. The partial logs recorded
by different instances of the same program are then gathered
at the software maintenance side, where they are statistically
analyzed in order to identify sets of partial logs whose
combination maximizes the chances to successfully replay
the bug. We have named the resulting system CoopREP
(standing for Cooperative Replay), a deterministic replay
system that leverages on cooperative logging performed by
multiple clients and on statistical techniques to combine the
collected partial logs. One of the main contributions of this
paper is to show that cooperative logging is a viable strategy
to replicate concurrency bugs with low overhead. Addition-
ally, the paper also makes the following contributions:

« A set of novel statistical metrics to detect correlations
among partial logs, that have been independently col-
lected by different clients;

« A novel heuristic, named Similarity-Guided Merge, that
leverages on these metrics to systematically perform
a guided search, among the possible combinations of
partial logs. The goal is to find those that generate
complete replay drivers capable of reproducing the bug.

o An experimental evaluation of the implemented pro-
totype of CoopREP, based on standard benchmarks
for multi-threaded applications and on a real-world
application.

The rest of this document is structured as follows: Sec-

tion II presents the background concepts related to this work.



Section III overviews some deterministic replay and statis-
tical debugging systems. Section IV introduces CoopREP,
describing in detail its architecture, the Similarity-Guided
Merge heuristic, and the metrics used to capture the similar-
ity among partial logs. Section V presents the results from
the experimental evaluation. Finally, Section VI concludes
the paper by summarizing its main points and discussing
future work.

II. BACKGROUND
A. Deterministic replay

Deterministic replay (or record/replay) aims to overcome
the problems associated with the reproduction of bugs, in
particular those raised by non-determinism. The purpose
of this technique is to re-execute the program, obtaining
the exact same behavior as the original execution. This is
possible because almost all instructions and states can be
reproduced as long as all possible non-deterministic factors
that have an impact on the program execution are replayed
in the same way [4]. Thereby, deterministic replay operates
in two phases:

1) Record phase — consists of capturing data regarding
non-deterministic events, putting that information into a
trace file.

2) Replay phase — the application is re-executed consult-
ing the trace file to force the replay of non-deterministic
events according to the original execution.

B. Sources of Non-determinism

External factors often interfere with the program execu-
tion, preventing the timing and the sequence of instructions
executed to be always identical. The sources of these factors
can be divided into two types: input non-determinism and
memory non-determinism [10].

Input non-determinism encompasses all the inputs that
are received by the system layer being logged but are not
originated in that layer (e.g. signals, system calls, hardware
interrupts, DMA, keyboard and network inputs, etc). This
kind of non-determinism is present in both single-processor
and multi-processor machines.

Memory non-determinism in single-processor systems is
mainly due to the thread interleaving in the access to shared
memory locations, which may vary from run to run (and,
with a lesser extent, from reads to un-initialized memory
locations). Memory non-determinism can be tackled by
using “logic time” [11] to log the events, instead of ordinary
physical time. In fact, logical time may be sufficient to sup-
port deterministic replay in single-processor systems [12].
However, in multi-processor systems (e.g. SMPs and multi-
cores) the scenario is more complex since it iS necessary
to take into account how threads that execute concurrently
on different processors may interleave with each other.
Therefore, one needs to capture the global order of shared
memory accesses and synchronization points (obviously, this

is not a problem when threads are independent from each
other).

III. RELATED WORK

There are various approaches to prevent bugs in a program
or to optimize the debugging process. In this section we
focus on approaches that aim at reproducing the failure or
to statistically isolate it, as these are the most relevant to
our work. Among the deterministic replay solutions, over
the past few years, several solutions have been proposed to
cope with the challenges brought by multi-processors. Based
on how they are implemented, prior work can be divided in
two main categories: hardware-based and software-based.

Hardware-based solutions rely on hardware extensions
to efficiently record the non-deterministic events and, con-
sequently, mitigate the overhead imposed to the produc-
tion run. Flight Data Recorder[13] and BugNet[14] have
provided solutions to achieve this, but at a cost of non-
trivial hardware extensions. More recently, DeLorean [15]
and Capo [16] have proposed new techniques to reduce the
complexity of the extensions. Despite that, they still require
changing non-commodity hardware, which can be costly.

Regarding software-based approaches, InstantReplay [8]
was the first deterministic replay system to support multi-
processors. It leverages on an instrumented version of the
Concurrent-Read Exclusive-Write (CREW) protocol [8] to
control and log the accesses to shared memory locations.
In turn, DejaVu [7] logs the order of thread “critical events”
(e.g. synchronization points and accesses to shared vari-
ables) and uses global clocks to enforce their execution in
total order at replay time. However, this technique incurs
high performance overhead and requires large trace files.
JaRec [6] reduces the overheads imposed by InstantReplay
and DejaVu, by dropping the idea of global ordering and
using a Lamport’s clock[11] to preserve the partial order
of threads with respect to synchronization points. However,
JaRec requires a program to be data race free in order to
guarantee a correct replay, otherwise it only ensures deter-
ministic replay until the first data race. This constraint makes
this approach unsuitable for most real world concurrent
applications, given that is common the existence of both
benign and harmful data races. LEAP[9] addresses JaRec
issues by tracking all shared memory accesses, in addition
to those performed on monitors. However, to minimize the
runtime overheads, LEAP only keeps a local trace for each
shared variable, containing the order of the thread accesses
to that variable.

All the previous approaches try to reproduce the bug on
the first replay run, thus inducing large overheads during pro-
duction runs, with the drawback of penalizing also bug-free
executions, which are much more frequent than the faulty
ones [4]. Motivated by this, some recent solutions, such as
PRES [4], ODR [17], and ESD[18], relax the constraint of
replaying the bug at the first attempt, by only logging partial



information (or even none, in the case of ESD) in order to
further minimize the cost of recording the original execution.
Later, these solutions apply inference techniques to complete
the missing information.

Our solution, denoted CoopREP, is also based on the
observation that it is not crucial to achieve deterministic
replay at the first attempt, but improves previous work
as it leverages on information logged by multiple clients
to ease the inference task. For this, CoopREP draws on
statistical debugging techniques, which aim at isolating bugs
by analyzing information gathered from a large number of
users.

Statistical debugging was pioneered by CBI[19]. This
system collects feedback reports that contain values recorded
for certain predicates of the program (e.g. branches, return
values, etc). Then, performs a statistical analysis of the
information gathered in order to pinpoint the likely source
of the failure. However, CBI does not support concurrency
bugs. CCI[20] outstrips this limitation by adjusting CBI’s
principles to cope with non-deterministic events. For in-
stance, it implements cross-thread sampling and relies on
longer sampling periods, because concurrency bugs always
involve multiple memory accesses. CoopREP differs from
CCI in the sense that we are concerned with the bug
reproduction, whereas CCI strives to identify and isolate
predictors that can explain the root causes of failures caused
by concurrency errors.

Since recording and replaying input non-determinism can
be achieved with an overhead less than 10% [4], [5], [12],
we only focus on coping with memory non-determinism. In
fact, a recent study on the evolution of the types of errors in
MySQL database [21] shows a growth trend in the number
and proportion of concurrency bugs over the years. Thereby,
CoopREP addresses the deterministic replay of this kind
of bugs (e.g. atomicity violations, data races), disregarding
other sources of non-determinism.

IV. CoOPREP SYSTEM

This section describes CoopREP, a system that provides
fault replication of concurrent programs, based in coop-
erative recording and partial log combination. Given that
CoopREP reuses and extends several building blocks that
were originally introduced in LEAP [9], we begin by pre-
senting an overview of LEAP.

A. LEAP

LEAP [9] proposes a general technique for the determin-
istic replay of Java concurrent programs in multi-processors.
It is based on the insight that, to achieve deterministic replay,
it is sufficient to record the local order of thread accesses
to shared variables, instead of enforcing a global order. To
track thread accesses, LEAP associates an access vector to
each different shared variable. During execution, whenever
a thread reads or writes in a shared variable, its ID is stored

in the access vector. For instance, let us assume a program
P with a shared variable z and running with two threads
(t1 and t5). If, during the execution of P, x is accessed one
time by ¢; and, later, two times by to, the access vector of
x will be <t1,t2,t2>.

Using this technique, one gets (local) order vectors of
thread accesses performed on individual shared variables,
instead of a global-order vector. This provides lightweight
recording, but relaxes faithfulness in the replay, allowing
thread interleavings that are different from the original exe-
cution. However, in [9] the authors claim that this approach
does not affect the error reproduction, and they formally
prove the soundness of this statement.

To locate the shared program elements (SPEs), LEAP
uses a static escape analysis called thread-local objects
analysis [22] from the Soot' framework. Given that accu-
rately identifying shared variables is generally an unde-
cidable problem, this technique computes a sound over-
approximation, i.e. every shared access to a field is indeed
identified, but some non-shared fields may also be classified
as shared [9].

SPEs include variables that serve as monitors (including
Java monitors) and other shared field variables (including
class and thread escaped instance variables). For each identi-
fied SPE, LEAP assigns offline a numerical index in order to
be able to consistently identify objects across different runs.
Moreover, as access vectors only contain thread IDs tracked
during the production run, it is imperative to correctly
recognize each thread in both recording and replay phases.
LEAP achieves this by maintaining a mapping between the
thread name and the thread ID during recording and using
the same mapping for replay. In addition, it uses a list with
the parent threads’ IDs to track the global order in which
they create their child threads, thus ensuring the same thread
creation order when recording and replaying the execution.

The overall infrastructure of LEAP, depicted in Figure 1,
consists of three major components: the transformer, the
recorder, and the replayer.

The transformer receives the Java program bytecode and
employs two types of instrumentation schemes to produce
the record version and the replay version, respectively.
LEAP instruments the following code instructions: i) SPE
accesses, ii) thread creation information, and iii) recording
end points.

The record version is then executed and when a program
end point is reached, the recorder saves both the recorded
access vectors and the thread ID map information. In addi-
tion, the recorder also creates the replay driver, i.e. a Java
file containing the code needed to execute the replay version
of the program and initiate both the thread scheduler and the
trace loader components.

Finally, the replayer uses the logged information and the
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Figure 1. Overview of the LEAP architecture (adapted from [9]).

generated replay driver to replay the program. To control the
interleaving of thread execution (and enforce a deterministic
replay), LEAP takes control of the thread scheduling and
consults the thread ID map information file.

The evaluation study presented in [9] has shown that
LEAP incurs a runtime overhead ranging from 7.3% to
626% (for applications with several shared variables ac-
cessed in hot loops). In terms of space overhead, the log
size in LEAP is still considerable, ranging from 51 to 37760
KB/sec.

As we will explain, CoopREP re-uses some key concepts
of LEAP, in particular the idea of logging accesses on a
per-SPE basis. However, by introducing the notion of coop-
erative logging, CoopREP allows for achieving significant
(up to one order of magnitude) reductions of the logging
overhead incurred by LEAP and, more in general, by classic
non-cooperative logging schemes.

B. CoopREP Architecture

Figure 2 illustrates the overall architecture of CoopREP.
During the instrumentation phase (Figure 2-1), the trans-
former instruments the Java program bytecode to generate
both the record version and the replay version, as done
in LEAP. Unlike LEAP, however, the record version is
instrumented to only log a subset of the SPEs. In the
following, we will refer to this version as partial record
version. The partial record versions are then sent to the
clients, whereas the replay version is sent to the replayer.

Figure 2-2 illustrates the record and replay phases. In
CoopREP, there is a recorder module for each client. Con-
versely to LEAP, in CoopREP the recorder does not record
all SPEs’ access vectors. Instead, each user logs accesses
only to a part of the program’s SPEs, as previously defined
by the transformer. Assuming that the program is executed
by a large population of users, this mechanism allows to
gather access vectors for the whole set of SPEs with high
probability. By doing this, CoopREP aims at minimizing the
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Figure 2.  Overview of the CoopREP architecture: (1) Instrumentation
phase; (2) Record and Replay phases.

performance overhead that would be required if one had to
record all the access vectors at each client.

When the production run ends, each client sends its partial
log to the developer site to be analyzed. This log consists
of the access vectors recorded for a subset of the SPEs, a
hash of the log (computed in our prototype using MD5),
the thread ID map, and also an additional bit indicating the
success or failure of the execution (successful executions
can be useful for the statistical analysis).

At the developer site, the statistical analyzer employs a
novel lightweight statistical methodology (see Section IV-G)
that aims at pinpointing which partial logs are more likely to
be successfully recombined in order to generate a complete
log yielding an equivalent execution that reproduces a given
concurrency bug.

Finally, the combination of access vectors determined by
the statistical analyzer is passed as input to the replayer
component, along with the thread ID map and the generated
replay driver. Note that, given that access vectors come from
independent executions, the resulting combined log can be
incompatible, meaning that the replayer fails to enforce the
thread execution order specified by the access vectors of the
combined log. In this case, the execution will hang, as none
of the threads will be allowed to perform its subsequent
access on a SPE. This allows to use a simple, but effective,
deadlock detection mechanism that terminates immediately
the execution replay as soon as it is detected that all threads
are prevented from progressing.

Of course, the replayer needs also to deal with the case
in which the bug is not replayed. This is a non-trivial issue,



for which we rely on standard techniques already adopted
in other probabilistic fault-replication schemes [4], [17]. For
crash failures, it is straightforward, as CoopREP can catch
exceptions. For incorrect results, it is more complicated,
and it is, in general, required to obtain information from
programmers regarding the failure symptoms. These include
conditional breakpoints to examine outputs for detecting
anomalies with respect to the originally buggy execution
to be replayed. CoopREP could also benefit from the inte-
gration with bug detection tools, such as [23], which could
automate the identification of non-visible bugs.

In case the bug cannot be successfully reproduced, the
replayer will send feedback to the statistical analyzer com-
municating the replay failure, so the latter can investigate
another access vector combination and produce a new com-
plete log for replay. This process ends when the bug is
successfully replayed or when the maximum number of
attempts to do it is reached.

C. Partial Log Recording

CoopREP is based on having each instance recording
accesses to only a fraction of the entire set of the SPEs
of the program. The subset of SPEs to be traced is defined
at instrumentation time by the transformer. For this purpose,
different criteria may be used, e.g. random selection, load
balancing distribution, subset of fixed SPEs, etc. In this
paper all experiments use the random selection of SPEs.
The research of the viability of different selection criteria is
left for future work.

Therefore, in the implemented prototype, whenever a new
SPE is identified, CoopREP uses a simple probabilistic
scheme to decide whether the SPE is to be instrumented or
not by a given instance. This ensures that each instance only
tracks a fraction of the total number of SPEs of the program,
and statistical fairness. However, it is not guaranteed that two
partial logs (acquired at different clients) necessarily overlap.
The drawback of this is that, if two partial logs have no
SPEs in common, it is impossible to deduce whether these
partial logs were traced from equal executions and that are
suitable to be combined. This problem could be addressed
by increasing the percentage of coverage to ensure SPE
overlapping (at the cost of greater overheads), or by defining
a smaller fixed subset of SPEs to be logged by all users.

Moreover, one must note that the overhead reduction may
not be linear with the decrease of the coverage percentage.
This happens because some SPEs may be accessed more
frequently than others, therefore, when instrumenting the
code, the logging overhead may not be distributed equally
among the users. A solution for this could be instrumenting
the whole program and profiling it, at the developer side, in
order to measure the number of accesses performed on each
SPE. Later, when instrumenting the user versions, CoopREP
could already take into account the SPEs access distribution.

D. Merge of Partial Logs

The major challenge of using partial recording is how to
combine the collected partial logs in such a way that the
access vectors used lead to a feasible thread interleaving,
capable of reproducing the bug during the replay.

In general, the following facts make the partial log merg-
ing difficult: i) the bug can be the result of several different
thread interleavings; ii) the probability of obtaining two
identical executions of the same program can be very low
(this probability is inversely proportional to the complexity
of the program in terms of number of SPEs and the number
of thread accesses); iii) the combination of access vectors
from partial logs of faulty executions may enforce a thread
order that leads to a non-faulty replay execution; iv) the
combination of access vectors from partial logs of faulty
executions may enforce a thread order that leads to a non-
compatible replay execution.

To address these challenges, and to mitigate the incom-
patibility of the merged access vectors, CoopREP applies
statistical metrics over the universe of collected partial logs
to pick those that present more similarity. Thereby, our
statistical metrics are divided in two types: statistical metrics
for partial log correlation and statistical metrics for bug
correlation.

E. Statistical Metrics for Partial Log Correlation

These metrics measure the amount of information that
different partial logs may have in common, so that one
can increase the probability of merging compatible access
vectors. In particular, the following statistical metrics are
used to calculate the partial log correlation: Similarity and
Relevance. Both metrics are described in detail below.

1) Similarity: The rationale behind the classification of
the similarity between two partial logs is related to their
number of SPEs with identical access vectors (i.e. that had
recorded exactly the same thread interleaving). Hence, the
more SPEs with equal access vectors the partial logs have,
the better.

The computation of this metric can come in two flavors:
Plain Similarity (PSIM) and Dispersion-based Similarity
(DSIM), according to the weight given to the SPEs of the
program. To better define these metrics, Table I presents
some formal notation. With this notation, we can now define
the metrics as follows.

Let Iy and I; be two partial logs, their Plain Similarity
(PSIM) is given by the following equation:

#Equal, o (1 _ #Diﬁ"zo,ll)
#S #S

where #Equal, , , #S, and #Diff;,,, denote the cardi-
nality of the sets Equal, , , S, and Diffy, ;,, respectively.
Note that since we are using the client-generated hashes
of the logs, the functions Equal; ; and Diff;,;, can be
implemented very efficiently.

()

PSIM(lo, 1) =



[ Notation | Description |
S Set of all the SPE identifiers of the program.
S; Set of the SPE identifiers recorded only by the partial log [.
Set of the different hashes of the access vectors recorded by
AV .
all the partial logs.
AV, Set of the hashes of the access vectors recorded only by the

partial log I.

avecs(s) : S — AV

Map that, for a given SPE identifier s, returns the set of the
hashes of its access vectors across all the partial logs.

avecy(s) : S — AV

Function that maps a SPE identifier s to the hash of its access
vector, recorded by the partial log [.

Equaly, 1, = {s| s € Sj, NSy, A avecy(s) = avecy (s)}

Set of the SPE identifiers, recorded by both partial logs lo
and [, with identical access vectors.

Diff1,,1, = {s|s € S, NSy, Aavecy,(s) # avecy, (s)}

Set of the SPE identifiers, recorded by both partial logs [
and 1, with different access vectors.

Simy, = {l1,l2, ..., g}

Set of the k partial logs more similar (according to either the
plain or dispersed similarity metric) to lp (denoted as group
of similars of lp).

Filllg,Simlo = {S | ERS Slo USll USl2 U"'U‘Slk Al la, ..l € Simlo}

Union of the sets of the SPE identifiers recorded by the partial
log lo and by the partial logs of its group of similars Simy, .

Table T
NOTATION USED TO DEFINE THE STATISTICAL METRICS.

It should also be noted that this metric will only be 1
when both logs are complete and identical, i.e. they have
recorded access vectors for all the SPEs of the program
(Si, = &1, = S) and those access vectors are equal for both
logs (avec,(s) = avecy, (s),Vs € S). This implies that,
for every two partial logs, their plain similarity will always
be less than 1. However, the greater this value is, the more
probable is that the both partial logs are compatible.

Let [y and [; be two partial logs, their Dispersion-based
Similarity (DSIM) is given by the following equation:

DSIM(lp, 1) = >

IEE‘I”“llO,Ll

weight(y)

weight(z) X (1 — Z

yEDlﬂlo,zl

where weight(s) is a function of type S — Double that
maps each SPE identifier to a double value that captures
its relative weight, in terms of overall-dispersion. Here, the
overall-dispersion of a given SPE corresponds to the ratio
between the number of different access vectors (based on
their hash) logged (across all clients) for that SPE and the
total number of different access vectors collected for all the
SPEs (across all clients). Thereby, the weight function of a
SPE identifier s can be calculated as follows:
_ #avecs(s)
C #HAY

Assume for instance that we have two SPEs, = and y,
and two partial logs containing identical access vectors for
SPE z (say z*) and different access vectors for SPE y (say
y' and y2). In this case we would have weight(z) = %
and wetight(y) = % Notice that this definition assigns larger
weights to the SPEs whose access vectors are more likely
to be different across different partial logs. When used in
DSIM equation, this metric allows for biasing the selection

weight(s) 2

towards pairs of logs having similarities in those SPEs that
are more likely subject to different access interleavings. The
rationale is that if we have that two partial logs having
in common a ‘“rare” access vector for a given SPE, then
with high probability they were originated from equivalent
executions.

Comparing the two metrics, one can see that the Plain
Similarity considers that every SPE has the same impor-
tance, whilst the Dispersion-based Similarity assigns dif-
ferent weights to the SPEs. In general, both metrics allow
to pinpoint the most similar partial logs, but the first is
more useful when the overall-dispersion weight values are
relatively well distributed for all the SPEs. On the other
hand, the Dispersion-based Similarity is more suitable for
cases when there are many SPEs whose access vectors are
identical in every execution.

2) Relevance: This metric allows to classify each partial
log according to its likelihood of being completed with
compatible information:

#S
> €Sim, Similarity(lo, ln)
n 0
#Simy,

Relevance(lp) = a x

+(1-a)x ©)
where Simzilarity(lo,l,) is one of the two possible types
of Similarity metrics.

The Relevance metric is the sum of two parcels weighed
by the parameter 0 < « < 1, thus ensuring that 0 <
Relevance < 1. The first parcel captures the “complete-
ness” of the set of SPEs obtainable by merging the partial
logs, i.e. the number of SPEs that is possible to fill joining
the access vectors from the partial log [y and its group of
similars Simy,. This follows the rationale that the more



missing SPEs of [y that can be filled with access vectors
from similar partial logs, the better.

In turn, the second parcel provides a measure of the
partial logs expected compatibility, by computing the av-
erage similarity of all the partial logs in the group of
similars. This allows to pick, as the base partial log, the one
whose group of similars is composed by partial logs with
high similarity, thus increasing the probability of merging
compatible information.

It should be noted that the value of each parcel is restricted
to the range [0,1]. A value of 1 for the first parcel means
that the full set of SPEs can be completed by combining the
partial logs in Sim;,, whereas a value of 1 for the second
parcel can only be achieved in the extreme case in which
all logs in Sim,, are complete and identical.

Moreover, one should notice that a partial log [; can only
be part of Simy, if Similarity(lo,l1) > threshold. This
avoids the group of similars to be composed by partial logs
with a very low value of similarity. Also, the maximum size
of the group of similars (#S5im;,), can be defined by the
developer.

In our experiments, we found o = 0.7, max(#Sim,,) =
5, threshold = 0.3 for Plain Similarity, and threshold =
0.01 for Dispersion-based Similarity (because the weight of
some SPEs can be very low), to be good values.

FE. Statistical Metrics for Bug Correlation

Unlike the previous metrics, the statistical metrics for bug
correlation are concerned with the correlation between the
bug and each access vector individually. This also leverages
information from successful executions and is specially
useful when, even after merging the partial logs of all buggy
executions, there are still SPEs to be completed.

To compute these metrics, we adapt the scoring method
proposed by Liblit et al[19]. Thereby, access vectors are
classified based on their Sensitivity and Specificity, i.e.
whether they account for many failed runs and few success-
ful runs. With this information, it is possible to define a third
metric, denoted Importance, which computes the harmonic
mean between the previous two metrics, thus identifying the
access vectors that are simultaneously high sensitive and
specific.

Let Fi,tq be the total number of partial logs resulting
from failed executions; for each access vector v, let F'(v)
be the number of failed partial logs that have recorded v for
a given SPE, and S(v) be the number of successful partial
logs that have recorded v for a given SPE. The three metrics
are then calculated as follows.

F(v)

Sensitivity(v) = 7 )
total
N
pecificity(v) = 5(0) + F©) )
Importance(v) = 2 ©)

1 T 1
Sensitivity(v) ' Specificity(v)

In summary, the higher the Importance value, the more
correlated with the bug is the access vector.

G. Similarity-Guided Merge

To merge the partial logs and generate a complete log
having high probability to replay the faulty execution, we
developed a heuristic denoted Similarity-Guided Merge. This
heuristic operates in the following five steps:

1. Calculate the degree of similarity between the partial
logs: the first step consists of calculating the similarity
between each partial log and all the others from the universe
of partial logs received. To calculate the similarity, CoopREP
applies the Plain Similarity metric or the Dispersion-based
Similarity metric, to every possible pair of partial logs.

2. Identify the list of base partial logs: the next step consists
of identifying the list of the partial logs that can be a poten-
tial good basis to start reconstructing the faulty execution.
To build this list, CoopREP first calculates the relevance
of each partial log and picks the n most relevant ones (we
found n = 10 to be a suitable value for our experiments) in
a descending order according to their relevance value.

3. Complete the base partial log with information from the
group of similars: having already chosen the base partial
log, CoopREP identifies the unrecorded SPEs in the base
partial log and completes them with the respective access
vectors traced by the logs in the group of similars. If all SPEs
have been associated with an access vector, the obtained
complete log is sent to the replayer, along with the thread
ID map and the generated replay driver. On the other hand,
if there are still empty SPEs, the heuristic proceeds with the
next step.

4. Complete the base partial log with information from
partial logs “similar by transitivity”: when the access
vectors from the group of similars are not sufficient to create
a complete replay log, CoopREP tries to fill the missing
SPEs with access vectors from the partial logs “similar by
transitivity”. These partial logs, although not belonging to
the group of similars referred in the previous step, are part
of the group of similars of those partial logs which are
themselves similar to the base partial log. In other words,
if i1 € Simy, ANly € Simy, = 1 € Sim%o, where Sim;;
contains the partial logs which are n'"-degree similar to [,
(in this example, l> would be second-degree similar to ).

5. Complete the base partial log with statistical indicators:
if it is still not possible to complete the log for replay (the
union of the different groups of similars may not cover all
the SPEs of the program), CoopREP applies the metrics
described in Section IV-F to the universe of access vectors
collected, and picks the ones with greater Importance (see
Equation 6) to fill the missing SPEs.

At the end of this process, CoopREP replays the merged
log and verifies if the bug is reproduced. If it is, the goal has



been achieved and the process ends. If it is not, CoopREP
chooses the next partial log in the list of the most relevant to
be the new base partial log and re-executes the Similarity-
Guided Merge from the step 3. It should be referred that,
in the worst case scenario, where all the most important
indicators failed to replay the bug, the heuristic switches to
a brute force mode. Here, all the possible access vectors are
tested for each missing SPE.

V. EVALUATION
A. Experimental Setting

All the experiments were conducted with machines Intel
Core 2 Duo at 2.26 Ghz, with 4 GB of RAM and running
Mac OS X. CoopREP prototype was implemented over a
LEAP public version.In order to get comparative figures, this
standard version of LEAP was also used in the experiments.

Regarding partial logging, we vary the percentage of the
total SPEs logged in each run from 10% to 75%. For
each configuration, 500 partial logs from different failed
executions were used, plus more 50 of successful runs. To
get a fairer comparison of the different recording schemes,
the partial logs were generated from 500 complete logs,
picking randomly the SPEs to be stored according to the
scheme’s percentage.

For the Plain Similarity we used a threshold of 0.3 and
for the Dispersion-based Similarity we used a threshold of
0.01 (given that the weights of some SPEs may be very low).
Regarding the maximum number of attempts of the heuristic
to reproduce the bug, it was set to 500.

B. Evaluation Criteria

Three main criteria were used to evaluate CoopREP,
namely: i) the bug replay capacity (consists of the number
of attempts of the heuristic to replay the bug, therefore,
the less number of tries, the better); ii) the performance
overhead; and iii) the size of the partial logs produced. It
should be noted that the two latter criteria were applied to
both CoopREP and LEAP, in order to evaluate the benefits
and limitations of our solution.

To assess CoopREP’s bug replay capacity, we used some
bugs from the IBM ConTest benchmark suite [24], and a real

Total Bug
Program SPEs Accesses Description
BoundedBuffer 12 1376 Notify instead of NotifyAll
BubbleSort 10 49964 Not-atomic
ProducerConsumer 8 997 Orphaned thread
Piper 6 347 Missing condition for Wait
Manager 4 30240 Not-atomic
TwoStage 4 27103 Two-stage
BufferWriter 3 50417 Wrong or No-Lock
Table IT
DESCRIPTION OF THE CONTEST BENCHMARK BUGS USED IN THE
EXPERIMENTS.

bug from the widely-used Java Application Server Tomcat.
In order to measure the overheads imposed, we compared
CoopREP against LEAP on the previous two applications
and on the Java Grande workload benchmark.

C. Bug Replay Capacity

1) ConTest Benchmark: The IBM ConTest benchmark
suite [24] contains heterogeneous programs affected by sev-
eral types of concurrency bugs. In order to be able to
evaluate the effectiveness of CoopREP when distributing
the logging burden across at least 4 clients, we restrict our
analysis to the ConTest programs that have at least 4 SPEs.
These are described in Table II, in terms of its number of
SPEs, the total number of SPE accesses, and the bug-pattern
according to [24].

Table III shows the number of attempts of the heuristic
(using both Plain Similarity and Dispersion-based Similar-
ity) to replay the ConTest benchmark bugs, when varying the
percentage of SPEs recorded at each instance of the program
in the range from 10% to 75%.

Analyzing the results, one can verify that the Similarity-
Guided Merge heuristic only failed to replay the bug in
programs BoundedBuffer (with percentage of SPEs recorded
smaller than 50%), Manager, and TwoStage (only in the
particular case of Plain-Similarity when logging 75% of the
total SPEs). These results highlight that executions involving
a high number of total SPE accesses are not necessarily
harder to reproduce using partial logging strategies. The
concurrency bug affecting the BubbleSort program, for
instance, was always successfully reproduced at the first
recombination of partial log, even though it is the second
to entail the higher number of SPE accesses (around 50K).
The actual effectiveness of the heuristic depends rather on
how the accesses are distributed among the SPEs and, in
particular, on how that distribution influences the SPEs’
dispersion ratio. Here, the dispersion ratio indicates how
disperse is the SPE, i.e. whether many different access
vectors were recorded for it or not. More precisely, the
dispersion ratio for an SPE is computed by dividing the
number of different access vectors recorded for the SPE by
the total number of access vectors recorded for that SPE
(notice that this metric differs from the overall-dispersion,
described in Equation 2). Figure 3 reports the SPE dispersion
ratios for the ConTest benchmark programs (for the sake
of readability and to ease the comparison, Figure 3 only
presents the values for the full logging configuration).

We note that the BubbleSort program has only one SPE
with a very high dispersion ratio (this SPE also accounts
for about 99% of the total accesses), while the remaining
SPEs always present the same access vector across all
the executions. This allowed the Similarity-Guided Merge
heuristic to quickly identify a set of partial logs whose
combination yielded to a successful bug reproduction.



Plain Similarity

Dispersion-based Similarity

Program 10% | 125% | 16.7% | 25% | 50% | 75% || 10% | 12.5% | 16.7% | 25% | 50% | 5%

BoundedBuffer X X X X X 1 X X X X 3 1
BubbleSort 1 1 1 1 1 1 1 1 1
ProducerConsumer - 1 5 5 2 1 - 1 1 1 1 1
Piper - - 1 2 1 1 - 1 1 1 1
Manager - - - X X X - - X X X
TwoStage - - - 34 13 X - - - 7 1 1
BufferWriter - - - 11 3 1 - - - 11 3 1
Table III
NUMBER OF THE ATTEMPTS REQUIRED BY THE HEURISTIC TO REPLAY BUG IN THE CONTEST BENCHMARK. THE X INDICATES THAT THE HEURISTIC
FAILED TO REPLAY THE BUG IN THE MAXIMUM NUMBER OF ATTEMPTS STIPULATED. “-” DENOTES THAT IT WAS NOT POSSIBLE TO ACHIEVE THE

SPECIFIED PERCENTAGE OF PARTIAL LOGGING, GIVEN THE TOTAL NUMBER OF SPES PRESENT IN THE APPLICATION.

ConTest Benchmark
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Figure 3. SPE dispersion ratios for the ConTest benchmark programs

(sorted in ascending order), when logging all the SPEs of the program.

On the other hand, the Manager program has all its SPEs
with a dispersion ratio of 1 or closer, which means that
almost all the recorded executions had a different thread
interleaving. These clearly represent unfavorable conditions
for the partial logging approach, which in fact failed to
replay the bug, as indicated in Table III. BoundedBuffer
exhibits a similar outcome, however, as it has some SPEs
with dispersion ratio less than 0.8, it was still possible to re-
produce the error even when logging 50%, using Dispersion-
based Similarity.

Regarding the TwoStage application, it presents unusual
results when using Plain Similarity, since the bug was not
replayed when the partial logs recorded more information.
The explanation for this is related to the SPE dispersion
ratios. As highlighted by Figure 3, out of the four program’s
SPEs, two were always identical (SPE O and 1), one had
very few equal access vectors (SPE 2), and the last one was
always different (SPE 3). Let us further discuss the three
partial logging scenarios when using Plain Similarity:

75% of SPEs: with this configuration, each partial log was
composed by three SPEs. Hence, the list of base partial
logs ended being composed by the partial logs whose group

of similars contained only other partial logs matching in
the common SPEs. As a consequence, the access vectors
combined for filling either SPE 2 or 3 were incompatible.

50% of SPEs: with this configuration, each partial log was
composed by two SPEs. Here, the list of base partial logs
was filled with the partial logs that have other ones matching
in the SPE with very few identical access vectors (SPE
2). This because all the partial logs containing only SPEs
0 and 1, albeit having many other similar partial logs,
could not generate a complete replay log just by combining
information from their group of similars. Therefore, their
relevance was lower (see Equation 3). The same did not
happen for the partial logs containing SPE 2, which ended
up composing the list of base partial logs. The bug was then
successfully replayed by trying different access vectors for
filling SPE 3.

25% of SPEs: with this configuration, each partial log was
composed by a single SPE. Since there were no intersection
points between the partial logs, the Similarity-guided Merge
heuristic picked random partial logs to act as base to
generate the replay log. Then, it tried to replay the error by
successively filling the missing SPEs with the access vectors
indicated by the statistical indicators. Nevertheless, the bug
was successful replayed at the 34th attempt.

In fact, the TwoStage program is a good example to un-
derstand the differences between the two Similarity metrics.
When using Dispersion-based Similarity, the heuristic could
easily reproduce the bug, because the SPEs had different
importance. Thus, the partial logs with the same access
vector for SPE 2 were identified as the best base partial
logs and used to generate a complete replay log.

As final remark, it should be noted that the addition of
successful logs did not impact the results. The reason is due
to the fact that when it was necessary to fill missing SPEs,
there were always many different access vectors with the
same degree of correlation to the bug.

2) Tomcat: Tomcat is a widely-used complex server ap-
plication. The bug replay capacity of the Similarity-Guided
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Table IV

NUMBER OF THE ATTEMPTS REQUIRED BY THE HEURISTIC TO REPLAY
TOMCAT#37458 BUG.

Merge heuristic was tested with bug #37458 2 of Tomcat
v5.5. This error consists of a NullPointerException,
resulting from a data race, and was already used in [9] to
test LEAP.

In this case only 15 SPEs (out of the total 32 SPEs of
Tomcat) were logged by CoopREP. This depends on the
fact that the available unit test designed to trigger the bug
only exercises a subset of Tomcat’s SPEs. Interestingly, even
despite the availability of an aimed unit test, triggering the
bug was not trivial, as the bug only manifested itself on
average after 112 attempts.

Table IV shows the number of attempts of the Similarity-
Guided Merge heuristic (using both Plain Similarity and
Dispersion-based Similarity) to replay the Tomcat#37458
bug, when logging from 10% to 75% of the SPEs. The data
confirms the effectiveness of the proposed statistical analysis
techniques, and in particular of the one based on Dispersion-
based similarity, which was able to identify compatible
combinations of partial logs and to replay successfully the
bug in less than 10 attempts even when logging accesses to
only 10% of the SPEs.

D. Performance Overhead

In this section we analyze the performance benefits
achievable via the CoopREP scheme. For space constraints,
we focus here on the ConTest and the Java Grande Forum
benchmarks, as the results related Tomcat show very similar
trends.

1) ConTest Benchmark: Figure 4 reports the performance
overhead on the tested programs. By using partial recording,
CoopREP achieved always lower runtime degradation than
LEAP. The results highlight that the overhead reductions are
not necessarily linear. This is due to the fact that some SPEs
are accessed significantly more frequently than others. Given
that the instrumentation of the code is performed statically,
the load balance in terms of thread accesses may not be
equally distributed among the users, as previously referred
in Section IV-C.

Clearly, the advantage of using partial logging is higher in
scenarios where the usage of full logging has a higher neg-
ative impact on performance. The most notorious case are
BubbleSort and BufferWriter , which are the applications
with the highest number of SPE accesses (see Table II).
For example, in BubbleSort, LEAP imposed a performance

Zhttps://issues.apache.org/bugzilla/show_bug.cgi?id=37458
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Figure 4. Performance overheads for the ConTest benchmark programs.
LEAP corresponds to the recording configuration of 100%.

[ Program [ SPEs | Total Accesses |
Raytracer 16 2.56x107
SparseMatmult 8 5.08x107
SOR 8 1.99x10%
Montecarlo 15 1.50x10°
Series 8 2.00x10%

Table V
DESCRIPTION OF THE JAVA GRANDE FORUM BENCHMARK PROGRAMS
USED IN THE EXPERIMENTS.

overhead of 26%, while CoopREP imposed only a 7%
overhead when recording 10% of the total SPEs (which was
sufficient to successfully replay the bug).

Overall, the results in Figure 4 highlight that, at least for
these benchmarks, the choice of logging at most 25% of the
SPEs lead to a runtime penalty that is consistently lower
than 10%: a threshold typically regarded as the maximum
acceptable overhead for real world applications [4], [20].

2) Java Grande Forum: The Java Grande Forum bench-
mark contains computationally intensive science and engi-
neering applications that require high-performance comput-
ers. Given that Java Grande Forum Benchmark does not have
known bugs, it was only used in our experiments to assess
the benefits and limitations of CoopREP when compared
to LEAP, on demanding computing environments. Table V
describes the benchmark programs used in terms of number
of SPEs and the overall number of times that they are
accessed. For the sake of readability, the results of the tests
performed are presented in tables, since the values obtained
vary within a large scale.

Table VI contains the experiments with respect to the
performance overhead measured when tracing the SPEs with
the previous logging configurations.

The results show that the logging overhead can be dramat-
ically abated by CoopREP, especially for memory intensive
applications, such as RayTracer or SparseMatmult. In the
former case, the average logging overhead drops by a factor
around 50x when configuring the CoopREP to log 10% of



the application’s SPEs. Analogous trends can be observed
also for the other benchmarks, providing an additional exper-
imental evidence at support of the significant performance
gains achievable via cooperative logging schemes.

E. Log Sizes

We now quantify the performance benefits achievable
by CoopREP from an alternative perspective, namely the
amount of logs generated with respect to a non-cooperative
logging scheme, such as LEAP.

1) ConTest Benchmark: Figure 5 reports the results
obtained for the ConTest benchmark, showing the ratio
between the size of the logs generated by various partial
recording configurations and the size of the logs generated
by LEAP. Unsurprisingly, the log size ratios follow a trend
that is analogous to that observed in the performance over-
head plots reported in Figure 4. The Manager benchmark
resulted to be the program for which CoopREP show a re-
duction ratio more similar to the one expected by decreasing
proportionally the recording percentage. In turn, BubbleSort
was the program where the log sizes decreased faster even
for small reduction of the total number of logged SPEs (the
log size ratios obtained, with respect to LEAP, were 0.36 and
0.62, when logging 50% and 75% of the SPEs, respectively).
However, the reduction obtained when logging less than 50%
of the SPEs was not very significant. This is due to the fact
that the largest fraction of accesses is confined to a single
SPE, which was recorded the same number of times for the
ten logs measured for these configurations.

On the other hand, Piper was the application where
decreasing the percentage of logged SPEs led to smaller
reductions of the log sizes. This is again explainable by the
heterogeneity in the size of the access vectors associated
with the various SPEs. In this application, recording 25% of
the SPEs only led to a log size ratio of 0.55.

2) Java Grande Forum: In Figure 6 we report the results
concerning the log size ratios with respect to LEAP when
using the Java Grande Forum.

From the figure analysis, the benefits of partial logging
are clear. The most evident case is SOR, where the log sizes
when logging less than 25% of the SPEs account for at most
0.1% of LEAP’s log size. In fact, for all the benchmark

Program Performance Overhead

2 10% [ 25% ] 50% [ LEAP
Raytracer 1757.5% | 9566.7% | 17452.1% | 92908.4%
SparseMatmult 571.6% 598.2% 1725.5% 2606.7%

SOR 0.8% 1.1% 2.0% 2.7%

Montecarlo 1.1% 1.5% 2.3% 7.3%

Series 0.08% 0.1% 0.4% 6.5%

Table VI

PERFORMANCE OVERHEADS FOR THE JAVA GRANDE FORUM
BENCHMARK PROGRAMS.
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Figure 6. Log size ratios for the Java Grande benchmark programs.

programs, there was a high heterogeneity in the size of
the access vectors of the program SPEs, which significantly
influenced the actual reduction in the log sizes. In other
words, the decreases are just not completely linear because
some SPEs are accessed more times than others. Given that
the instrumentation of the code is performed using a purely
random approach, the load in terms of logged SPE accesses
may not be equally distributed among the different runs,
as previously referred in Section IV-C. This implies that
the impact of logging =% of the SPEs will not necessarily
mean a reduction of 2% in both performance overhead and
log size. In fact, sometimes the average reduction may be
greater than expected (as in Raytracer and SparseMatmult),
but other times may be lower (as in Series when logging
75% of the SPEs). This motivates future research in how
one can equally distribute the information to be recorded
among the different clients.

VI. CONCLUSIONS

This paper introduced CoopREP, a system that provides
fault replication of concurrent programs, through cooperative
recording and partial log combination. CoopREP achieves



remarkable reductions of the overhead incurred in by con-
ventional deterministic execution replayer by letting each
instance of a program trace only a subset of its shared
programming elements (e.g. variables or synchronization
primitives). CoopREP relies on several innovative statistical
analysis techniques aimed at guiding the search of partial
logs to combine and use during the replay phase.

The evaluation study, performed with third-party bench-
marks and a real-world application, highlighted both the
effectiveness of the proposed technique, in terms of its
capability to successfully replay non-trivial concurrency
bugs, as well as its performance advantages with respect
to non-cooperative logging schemes.

We believe that this work opens a number of challenging
research directions, including the design of additional partial
logging schemes (e.g. taking into account load balancing or
locality of SPEs, or maximizing the probability of logging
overlapping SPEs) and new similarity metrics (e.g. that use
euclidean or edit distances between access vectors).
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