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Abstract—Programmers and support engineers typically rely
on log data to narrow down the root cause of unexpected
behaviors in dependable distributed systems. Unfortunately, the
inherently distributed nature and complexity of such distributed
executions often leads to multiple independent logs, scattered
across different physical machines, with thousands or millions
entries poorly correlated in terms of event causality. This renders
log-based debugging a tedious, time-consuming, and potentially
inconclusive task.

We present Falcon, a tool aimed at making log-based analysis
of distributed systems practical and effective. Falcon’s modular
architecture, designed as an extensible pipeline, allows it to
seamlessly combine several distinct logging sources and generate
a coherent space-time diagram of distributed executions. To
preserve event causality, even in the presence of logs collected
from independent unsynchronized machines, Falcon introduces a
novel happens-before symbolic formulation and relies on an off-
the-shelf constraint solver to obtain a coherent event schedule.

Our case study with the popular distributed coordination
service Apache Zookeeper shows that Falcon eases the log-
based analysis of complex distributed protocols and is helpful in
bridging the gap between protocol design and implementation.

I. INTRODUCTION

Developers of distributed systems cater for recording run-
time behavior by judiciously adding log statements to source
code [1], [2]. The number of log statements needed, and the
detail of the information collected, depends on the complexity
of the code. In systems that deal with concurrency and
faults, such as fault-tolerant consensus protocols, the resulting
effort is substantial. However, when an unexpected outcome
is noticed, log files are often the only source of information
that programmers can use to debug and fix the problem.

Unfortunately, log analysis in distributed systems still re-
mains a daunting task, which has motivated programmers to
ask for more practical ways to understand runtime behav-
ior.1 First, besides the sheer number of entries, trace files
are typically spread across several nodes and generated by
distinct logging libraries with heterogeneous formats. Second,
although timestamped, interleaved statements or execution on
different nodes leads to a wide set of possible event execution
flows and intermediate states that have to be considered. Third,
the lack of context propagation between nodes hinders the
ability to establish the causal relationship between events, i.e.,
the happens-before relationship typically denoted by “→” [3].

1https://issues.apache.org/jira/browse/ZOOKEEPER-816

Causality is particularly helpful for debugging distributed
executions, as it allows reasoning about the order of distributed
events2. However, relying solely on log entry timestamps is
not enough to establish causality. On the one hand, these
timestamps are based on physical clocks and, even if clocks
are synchronized on all relevant nodes, log messages are
often produced asynchronously after the fact they describe.
On the other hand, blindly considering that timestamps induce
causality hides the true system logic by flattening history.

Several tracing systems have been proposed in the past
to track causality and alleviate the burden of debugging
distributed systems [4]–[8]. Nonetheless, they require careful
program instrumentation and do not support the analysis of
events stemming from distinct, heterogeneous log sources. In
contrast, popular operating system utilities such as strace and
ltrace are powerful assets for troubleshooting runtime behav-
ior, as they are language-agnostic and capable of capturing the
system calls and signals executed by a program, but fall short
when it comes to inferring causality across processes.

In this paper, we aim to achieve the best of both worlds
by enabling the inference of causally-related activity atop
commodity monitoring tools. To this end, we propose Falcon,
a practical and effective log-based analysis tool for distributed
systems. Falcon does not require custom instrumentation and
supports popular tracing and logging utilities (e.g., log4j,
strace, tshark), thus being suitable for debugging real-world
applications.

Falcon operates as a pipeline: first, it normalizes the events
collected by the different logging sources; then, it resorts to
symbolic constraint solving to generate a global execution
trace that preserves causality; finally, it produces a space-time
diagram that enables a visual analysis of the whole execution.

To ensure event causality, Falcon employs a novel approach
that models a distributed execution by means of symbolic
variables (representing the logical clocks of the events traced)
and encodes the happens-before relationships as constraints
over those variables. Solving the constraint system with an
off-the-shelf solver yields a complete execution schedule that
coherently relates the data from the various log files, thus pro-
viding a thorough and accurate view of the original production
run. Due to its flexible design, Falcon’s pipeline can also be
extended with additional log libraries and visualization tools.

2We use event and log entry interchangeably in this paper.
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Our case study with the popular coordination service
Apache Zookeeper shows that Falcon is efficient and facili-
tates the understanding of complex distributed executions by
relating low-level system calls with user-defined log messages.

The rest of this paper is structured as follows. Section II
presents some background concepts and a motivating example.
Section III describes the design of Falcon, while Section IV
provides its implementation details. Section V presents the
case study with Apache Zookeeper. Section VI overviews the
most relevant related work and, finally, Section VII concludes
the paper by summarizing its main points.

II. BACKGROUND AND MOTIVATION

Low-Level Tracing Overview. *NIX environments nowa-
days offer various kernel-level tracers that enable powerful
troubleshooting capabilities. Moreover, by running at the op-
erating system level, these tracers are programming-language-
agnostic and even applicable to programs running on virtual
machines, thus being extremely useful for program debugging.
Notable examples include ftrace, strace, ltrace, eBPF, and
SystemTap.

At the core of most of these tools are system calls. In
computing, a system call, or syscall,3 can be defined as
the fundamental interface between an application and the
operating system kernel. During the execution of a program,
whenever it requires access to open and close files or to
establish a connection with a remote program, these intentions
are converted into syscalls. For example, the strace tool
captures the signals received and the system calls invoked by
the target program. This is possible because it resorts to the
ptrace syscall, which allows a process to take control over
another process.

The interception of a syscall can be done both when the
execution switches between the user mode to the kernel mode
(entry point) and vice-versa (exit point). Intercepting at the
former allows accessing the syscall parameters, whereas inter-
cepting at the latter gives the success/failure of the operation.

The time spent between both interception points can vary
arbitrarily, as it depends on the state of the operating system,
resource contention, and programming decisions, such as
signal handling. Also, the two points are not guaranteed to
appear contiguously in the trace. In fact, the output of strace
usually exhibits an interleaving of entry and exit points of
different syscalls.

Some of the aforementioned tools can be also used for
tracing the messages exchanged in a distributed system, since
they allow tracking the socket read and write syscalls invoked
during the execution. Unfortunately, such syscall log is not
enough per se to effectively analyze and debug distributed
protocols that rely on complex communication patterns (e.g.,
consensus, fault-tolerance, and replication protocols), which
are challenging to design and implement. The reason is that
there is no information with respect to the causality between
the syscalls logged.

3http://man7.org/linux/man-pages/man2/syscalls.2.html

# Format: [pid], syscall(parameters) = return_value
3.1 [n3-894] read(n2, "Go go go", 1023) = 8
3.2 [n3-894] write(n1, "Wait guys", 1023) = 9
3.3 [n3-894] write(n2, "Wait guys", 1023) = 9
3.4 [n3-894] read(n2, "Ok", 1023) = 2
2.1 [n2-782] write(n3, "Go go go", 1023) = 8
2.2 [n2-782] write(n1, "Go go go", 1023) = 8
2.3 [n2-782] read(n3, "Wait guys", 1023) = 9
2.4 [n2-782] write(n1, "Ok", 1023) = 2
2.5 [n2-782] write(n3, "Ok", 1023) = 2
1.1 [n1-675] read(n3, "Wait guys", 1023) = 9
1.2 [n1-675] read(n2, "Ok", 1023) = 2
1.3 [n1-675] read(n2, "Go go go", 1023) = 8

Fig. 1: Complete trace resulting from merging the partial
outputs of strace on three distinct nodes. [ni-pid] denotes the
global identifier of a process pid running on node i.

Motivating Example. As an example of this limitation,
consider a scenario with three participants of an online
multiplayer game, represented by three processes on distinct
machines connected through TCP sockets. In this scenario,
player 2 (corresponding to process n2-782) tells his teammates
to advance with a message “Go go go”. Player 3 (process
n3-894) disagrees with the suggestion and asks the team to
wait by replying “Wait guys”. Player 2 consents and writes
“Ok”. Player 1 (process n1-675), in turn, simply receives
the instructions given by the other players. The result of this
interaction was that player 1 advanced alone, causing the team
to later lose the game. Why did player 1 act against the
instructions given by the rest of the team?

In Figure 1, we present a possible log obtained by merging
the output of running strace on each process. The log contains
the syscalls executed during a chat conversation between the
three players, namely the reads and writes on each process’
socket. For the sake of readability, each entry is identified by
the concatenation of the node and process ids and the actual
files descriptors were replaced by the node ids.

In order to correctly reason about the runtime behavior
from the trace in Figure 1, one must first establish the
happens-before relationship between the syscalls. As defined
by Lamport [3], if an event a causally-precedes an event b in a
program execution, then a happens-before b (denoted a→ b).
A more detailed definition of the happens-before relationship
is given in Section III-C.

Causality in distributed systems is typically captured by
logical clocks [3] or vector clocks [9]. However, low-level
tracing tools such as strace are not able to record logical time.
Let us then mimic the procedure of manually inferring the
happens-before relations present in Figure 1.

The causal order of syscalls within each process’ trace is
trivial to define because it respects the program order [3].
As such, the main challenge here is to infer the inter-process
happens-before relationships.

Note that the first parameter on each write/read syscall
denotes the process that sent/received a message. Considering
that a read is always preceded by its corresponding write and
that TCP ensures reliable and ordered delivery, one is then
able to causally order the syscalls across the three processes.
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# Format: [pid], syscall(parameters) = return_value
2.1 [n2-782] write(n3, "Go go go", 1023) = 8
2.2 [n2-782] write(n1, "Go go go", 1023) = 8
3.1 [n3-894] read(n2, "Go go go", 1023) = 8
3.2 [n3-894] write(n1, "Wait guys", 1023) = 9
3.3 [n3-894] write(n2, "Wait guys", 1023) = 9
1.1 [n1-675] read(n3, "Wait guys", 1023) = 9
2.3 [n2-782] read(n3, "Wait guys", 1023) = 9
2.4 [n2-782] write(n1, "Ok", 1023) = 2
2.5 [n2-782] write(n3, "Ok", 1023) = 2
1.2 [n1-675] read(n2, "Ok", 1023) = 2
3.4 [n3-894] read(n2, "Ok", 1023) = 2
1.3 [n1-675] read(n2, "Go go go", 1023) = 8

Fig. 2: Trace resulting from causally reordering the syscalls
in Figure 1. [ni-pid] denotes the global identifier of a process
pid running on node i.

Tick 0

n2-782

write
8

"Go go go"

Tick 1 write
8

"Go go go"

n3-894

read
8

Tick 2 write
9

"Wait guys"

Tick 3 write
9

"Wait guys"

n1-675

read
9

Tick 4 read
9

read
8

Tick 5 write
2

"Ok"

Tick 6 read
2

write
2

"Ok"

Tick 7 read
2

Fig. 3: Space-time diagram of the trace in Figure 2. Each
vertical line represents a node, whereas the circles within
a line represent the syscalls executed by that node. Solid
lines connecting circles indicate a happens-before relationship
between the events. The dashed circular area highlights the
problematic message race.

In Figure 2, we depict a possible trace resulting from
causally reordering the syscalls according to the intra- and
inter-node happens-before relationships. To further ease the
analysis of the execution, we also convert the ordered trace
into a space-time diagram, which is shown in Figure 3. In
the diagram, vertical lines are the execution timelines of the
processes indicated by the labels, and the circles are the events
happening in each process. Each event is associated with a
given logical clock “tick”. We added the message sizes on each
event and the message content on read syscalls. Each pair of
connected events indicates a happens-before relationship.

Displaying the messages received by each process, one
obtains the following chat logs:

n1-675 n2-782 n3-894
n3: “Wait guys” n2: “Go go go” n2: “Go go go”
n2: “Go go go” n3: “Wait guys” n3: “Wait guys”
n2: “Ok” n2: “Ok” n2: “Ok”

Note that the chat log of process n1-675 exhibits an inconsis-
tency (highlighted in red) with respect to the actual message
history, which explains the reason behind the reckless move
by player 1. The dashed circular area in Figure 3 pinpoints
the root cause of this inconsistency: a delay in the arrival
of the message “Go go go” sent by process n2-782 caused
an inversion in the expected chat output. Since the inverted
messages are (semantically) causally related, this means that
there is a message race bug in the system implementation.

This example illustrates a game scenario that simply caused
a team to lose one round. However, in complex distributed
systems that require coordination, the consequences may be
much more severe (e.g. data loss or corruption). It is thus of
paramount importance to devise practical and effective tools
to aid the analysis of execution logs.

III. DESIGN

We propose Falcon – a practical and effective log-analysis
tool for distributed systems, capable of generating a global
execution schedule from multiple independent log files while
preserving event causality. This is achieved by means of a
novel symbolic constraint model that encodes the happens-
before relationship between events. Moreover, Falcon automat-
ically generates a causal space-time diagram of the execution,
which further eases the analysis of the logs and the understand-
ing of distributed executions. This section describes Falcon’s
design requirements, architecture, and happens-before model.

A. Design Requirements

Time spent at post-mortem software debugging is directly
affected by the amount of useful information captured during
production runs. Since logging is an expensive operation, a
trade-off must be made between the log’s verbosity level and
the performance and space overhead imposed at runtime [1].
For that reason, different tracing tools opt for focusing on
different aspects and provide distinct features (e.g. printing log
statements, sniffing network packets, profiling performance,
etc). Nevertheless, one should be able to leverage all those
features in order to ease the burden of debugging complex
distributed systems. A practical and effective log-analysis tool
should thus meet the following design requirements:
• Support several log sources. The tool should be able

to extract useful knowledge about the execution from
multiple data sources, such as logging libraries, network
sniffers (e.g. libpcap-based tools), and low-level tracing
tools (e.g. ptrace-based tools).

• Combine data in a causally consistent way. The tool
should be able to combine all logged events in a seamless

3



Trace
Processor

Happens-Before
Model Generator

SMT
Solver

.log 

…

.pcap
x y z

Visualizer

.log .pcap …

Causal
Trace

Fig. 4: Falcon’s pipeline architecture, which comprises mod-
ules for trace processing, model generation, and visualization.

and coherent fashion, even if they were captured at dif-
ferent physical machines with unsynchronized clocks. In
practice, this corresponds to ensuring that the happened-
before relationship between events is established across
all log files regardless of their source.

• Provide a visual representation of the execution. To
obviate complexity due to log verbosity and further help
developers to reason about the execution, the tool should
be able to display events in a “human-friendly” way. In
the particular context of distributed systems, space-time
diagrams depicting the inter-process causal dependencies
have long been used to aid the understanding of dis-
tributed protocols over multiple processes [10].

In the next section, we describe how Falcon meets the
aforementioned requirements.

B. Architecture

Falcon is designed with a modular architecture, whose com-
ponents operate together as a pipeline. In a nutshell, Falcon
receives as input log files from multiple data sources and
outputs a space-time diagram that preserves event causality.
Figure 4 depicts the architecture of Falcon, composed by three
main modules: the trace processor, the happens-before model
generator, and the visualizer. Each module is described in
detail as follows.

Trace Processor. Since the events logged by the different
tools can vary in both format and content, Falcon needs to
first normalize and merge the collected data into a global
event trace with a common scheme. This procedure is done by
the trace processor module. The trace processor is equipped
with a dedicated driver for each type of log, responsible for
translating the library-specific entries into events that can be
processed by Falcon. As such, drivers may range from simple
parsers for textual logs (e.g. for log4j) to packet unpackers for
network sniffers (e.g. tshark). In some cases, the trace proces-
sor generates events that are the result of merging data from
different logs. For example, an event representing the sending
of a message can be built by augmenting the information of a
write syscall with the message payload captured by a network
sniffer. The events resulting from Falcon’s log normalization
and merging are the following:
• START(process): a process starting event;
• END(process): a process finishing event;
• FORK(parent, child): a process creation event, where
child denotes the process spawned by process parent;

• JOIN(parent, child): represents a join event, where pro-
cess parent waits until the child process finishes;

• CONNECT(process, src, dst): represents a new con-
nection, where src and dst denote the addresses (IP and
port) of the local and remote processes, respectively;

• ACCEPT(process, src, dst): event indicating that a con-
nection was established, where src and dst also denote
the local and remote addresses, respectively;

• SND(process, src, dst,msg): a message sending event,
where msg is the identifier of message being sent from
the src address to the dst address;

• RCV(process, src, dst,msg): a message receiving
event, where msg denotes the identifier of the message
sent by the src address and received by the dst address.

• LOG(process,msg): a log entry event, where msg is
the content of the message logged by process process.

The trace processor module also exposes a public API
to ease the development of drivers and the integration of
additional logging libraries into Falcon.

Happens-Before Model Generator. The complete, normal-
ized event trace is then fed into the happens-before (HB)
model generator. This module is responsible for combining
all events into a single causally-consistent schedule. To this
end, the HB model generator builds a symbolic constraint
formulation encoding the happens-before relations between
events. For instance, the model encodes a constraint stating
that the send event of a message must happen-before the
corresponding receive event. The HB constraints are further
described in Section III-C.

Solving the model with an off-the-shelf constraint solver
yields a causally-ordered event schedule.

Visualizer. The visualizer finishes the Falcon’s pipeline
by providing a graphical representation of the causal trace
generated in the previous step. In detail, the visualizer gener-
ates a “space-time diagram”, as introduced by Lamport [3],
depicting both the events executed by each process and the
inter-process causal relationships between them.

C. Happens-Before Constraint Model

As defined by Lamport [3], there exists a happens-before
relationship between two events a and b, denoted a→ b, if:
• a and b belong to the same process4 and a precedes b in

the execution.
• a and b belong to different processes and a represents the

sending of a message m and b represents the reception
of m.

Distributed executions often comprise other causal relations
that should be considered, namely a→ b also holds if:
• a is the fork event of a process q by a process p and b is

the first event of q.
• a is the last event of a process q and b the join event of
q by a process p.

• a is the connect event issued by a process p to a process
q and b is the accept event in q.

4We use the term process to denote both processes and threads.
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Note that the happens-before relation is transitive, irreflexive
and antisymmetric. Also, when a9 b and b9 a holds, then
a and b are considered to be concurrent.

Falcon casts the problem of combining the events from inde-
pendent logs into a global, causally-ordered execution sched-
ule as a maximum satisfiability modulo theories (MaxSMT)
problem. The MaxSMT problem can be seen as an opti-
mization version of the satisfiability problem (for types of
variables other than boolean ones) and has the goal of finding
a total assignment to variables of a formula that maximizes
the number of satisfied clauses. Among the variants of the
MaxSMT problem, this paper assumes a partial MaxSMT
problem where some clauses are considered as hard and others
are considered as soft. The goal is thus to find an assignment
to the variables such that all hard constraints are satisfied and
the amount of satisfied soft constraints is maximized.

Falcon’s causality model comprises i) integer symbolic
variables that represent the logical clocks [3] of the events
supported by Falcon (see Section III-B) and ii) hard constraints
over those variables stating the causal relations between the
events. A solution to this model thus assigns a value to each
variable such that all happens-before rules are satisfied. In
practice, this corresponds to inferring a causally-consistent
execution schedule by computing a logical clock per event.

More formally, the constraint model, denoted ΦHB , consists
of a MaxSMT formulation defined as the following conjunc-
tion of sub-formulae:

ΦHB = φinter ∧ φintra︸ ︷︷ ︸
hard

∧GOAL︸ ︷︷ ︸
soft

(1)

where φinter encodes the inter-process causality constraints,
φintra encodes the intra-process happens-before rules due to
program order, and GOAL states the soft constraints that
allow steering the solving procedure towards a given goal.
Falcon currently provides support for generating logical clocks
that: i) follow the original timestamp order as much as possible
(φts), and ii) expose concurrency issues by minimizing the
logical time intervals between events (φmin). We now describe
each sub-set of constraints in more detail.

a) Inter-process HB Constraints (φinter): these constraints
represent the causal dependencies due to message exchanges
and inter-process synchronization. Following the happens-
before rules presented at the beginning of this section, the
inter-process HB constraints φinter are written as follows:

forkp,q < startq
endq < joinp,q

connectp < acceptq
sndp,m < rcvq

where p and q are distinct processes, m represents a given
message, and the variable names correspond to the events
described in Section III-B. For instance, for a message m sent
by p to q, the constraints encodes that the logical clock of
the corresponding event SND(p, p, q,m) in the trace must be
smaller than that of the event RCV(q, p, q,m).

b) Intra-process HB Constraints (φintra): these constraints
state that events in the same process execute sequentially
according to the program order. Let Γp denote the event trace
of a process p, and let ci and cj be the symbolic variables
representing the logical clocks of events i and j. The intra-
process HB constraints φintra are given by:

∀i, j ∈ Γp : (i < j =⇒ ci < cj)

c) Timestamp Constraints (φts): timestamp constraints are
soft constraints (see GOAL in Equation 1) that aim at approx-
imating the schedule produced by the solver to the actual event
ordering observed during the production run. These constraints
state that events should be given logical clocks that follow the
order given by timestamps in the log files. However, since
two causally-ordered events logged on different machines
may exhibit physical timestamps conflicting with their HB
relationship, timestamp constraints may be violated in order
to satisfy causality.

d) Clock Minimization Constraint (φmin): clock mini-
mization constraints are also encoded as GOAL soft clauses
and strive to minimize the values assigned to the symbolic
variables. The goal is to produce a compact schedule capable
of exposing event concurrency. For instance, if two distinct
SND events exhibit the same logical order in the schedule
yielded by the solver and their corresponding RCV events
belong to the same process, then there is a message race.

Let e ∈ Γ be an event in the complete execution trace and
ce the symbolic variable representing its logical clock. The
clock minimization constraint φmin is written as:

φmin = min
∑
∀e∈Γ

ce

Solving the ΦHB model generated by Falcon using an off-
the-shelf SMT solver yields an execution schedule in which
events are guaranteed to be causally ordered.

IV. IMPLEMENTATION

This section discusses some relevant implementation details
of our prototype of Falcon. The prototype is publicly available
at https://github.com/fntneves/falcon/.

The trace processor module is implemented as an extensible
Python program that allows the integration of custom drivers
for normalizing log files into a pre-defined JSON format.
Currently, the trace processor provides three out-of-the-box
drivers. The first is a ptrace-based tool that collects syscall
traces. The second driver handles logs generated by log4j, a
logging library for Java programs. The third uses tshark to
extract message payloads from pcap files and add them to the
corresponding send and receive events.

When tracing syscalls for pairs of events causally related,
we intercept the syscall of the first event solely at its entry
point and the syscall of the second event only at its exit point.
Since ptrace-based tracing utilities do not guarantee that the
two interception points of a syscall appear contiguously in the
trace, this approach is crucial to correctly infer causality.
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The happens-before model generator is written in Java and
uses the Z3 solver [11] to solve the model. The causal trace
produced by the solver is then output in JSON format.

Falcon’s current visualizer is implemented as a JavaScript
program that consumes the causal trace and generates a space-
time diagram using the SVG.js library. We are currently ex-
tending Falcon to use ShiViz [10] as the visualization module,
as it provides interactive analysis features.

V. CASE STUDY: APACHE ZOOKEEPER

Apache Zookeeper [12] is an open-source, scalable and re-
liable service that enables distributed coordination. Zookeeper
poses a good case study for Falcon as its implements com-
plex algorithms and protocols for leader election and atomic
broadcast, which are hard to analyze and understand in detail.

In a distributed deployment, Zookeeper runs with several
servers, of which one is leader and the others are followers.
Both roles are distinguishable in the sense that read requests
can be served by the followers while write requests are handled
only by the leader. For this case study, using Zookeeper 3.5.0,
we analyze a setup containing two Zookeeper nodes that
communicate with each other to elect the leader. In particular,
our execution scenario consisted of setting up a standalone
Zookeeper server and, then, adding a new node to the server
quorum.

During the execution, we collected Zookeeper’s built-in log
file produced with the log4j logging library and used our
ptrace-based tracer tool to record syscalls regarding thread
synchronization events, connections, and messages exchanges.

As the output layout generated by log4j is configurable, we
set the layout parameter to a custom Java class. In order to
correctly identifying the thread responsible for logging a given
message, we augment each log entry with a unique identifier
consisting of the concatenation of both the thread and process
ids. However, since the Java Virtual Machine does not allow
accessing the native thread identifier from a high-level API,
we rely on the Java Native Access to execute the gettid()
system call and retrieve the thread id directly from the native
operating system. The result of the syscall is thus introduced
as a parameter in the output layout of log4j.

In the following, we show how Falcon can be used to ana-
lyze the execution of Zookeeper and evaluate the performance
and scalability of the constraint solving procedure.

A. Falcon in Action

Figure 5 depicts the space-time diagram generated by Fal-
con for the logs collected during our Zookeeper execution
scenario. The causal trace was obtained by solving the model
with the timestamp soft constraints. The diagram shows that
there are two main processes (5598 and 5670) that spawn
several threads while running. For brevity, we include just the
thread timelines relevant for this example. In other words, we
discarded the threads that have only START, END and LOG
events. However, they can be useful for conducting a more
thorough behavior analysis.

0 START

5598-5663

START

5598-5666

START

5670-5754

START

5598-5755

START

5670-5753

START

5670-5749

START

5598-5756

1 LOG LOGLOG

2 CONNECTLOG

3 LOG LOGACCEPT

4 SND
8

LOGLOG

5 SND
8

LOG

6 SND
1

LOG

7 SND
1

LOG

8 SND
1

LOG

9 SND
1

LOG

10 SND
14

LOG

11 LOGRCV
8

LOG

12 LOGRCV
8

LOG

13 LOGRCV
1

LOG

14 LOGRCV
1

15 LOGRCV
1

16 RCV
1

LOG

17 RCV
14

LOG

18 LOGLOG SND
1

19 LOG SND
1

20 LOG SND
1

21 LOG SND
1

22 LOG SND
184

23 LOG SND
1

24 LOG SND
1

25 LOG SND
1

26 LOG SND
1

27 LOG SND
184

28 LOG SND
1

29 LOG SND
1

30 LOG RCV
1

31 SND
1

LOG

32 RCV
1

LOG

33 SND
1

LOG

34 RCV
1

LOG

35 SND
184

LOG

36 RCV
1

LOG

37 RCV
184

LOG

38 LOG RCV
1

LOG

39 LOG LOG RCV
1

40 LOG RCV
1

LOG

41 LOG RCV
1

LOG

42 RCV
184

ENDLOG

43 SND
1

LOG

44 SND
1

LOG

45 RCV
1

LOG

46 LOG RCV
1

47 LOG RCV
1

48 LOG RCV
1

49 LOG SND
1

50 LOG RCV
184

51 LOG RCV
1

52 LOG RCV
1

53 RCV
1

LOG

54 SND
1

LOG

55 RCV
1

LOG

56 SND
184

LOG

57 LOG RCV
184

LOG

58 LOGLOG

4

4 "zxid":0, "leader":1,
"election_epoch":1,
"epoch":1,"state":LOOKING

5 "zxid":0, "leader":2,
"election_epoch":1,
"epoch":1,"state":LOOKING

6 "zxid":0, "leader":2,
"election_epoch":1,
"epoch":1,"state":LOOKING

2 FastLeaderElection:888
New election. My id =  1

1

3 QuorumCnxManager:644
Address of remote peer: 2

3

1 QuorumCnxManager:365
Opening channel to server 1

2

6

5

4

Fig. 5: Space-time diagram of two Zookeeper servers connect-
ing to each other and performing a leader election. Vertical
lines are thread timelines and circles denote the executed
events on each thread timeline. The dashed and solid rectan-
gles represent different protocol steps, namely the connection
establishment between the peers and the leader election.
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The LOG events correspond to the timestamped entries
logged by log4j, while the remaining events were collected by
the syscall tracer. To ease the understanding of the diagram,
we highlight certain events with a circled number and display
their message content (for LOG events) or payload (for SND
and RCV events).

Figure 5 shows that, after booting, the server joining the
quorum starts by connecting to the existing peer. In particular,
the LOG events identified by 1 and 3 reveal that the process
5598 is the node with the server identifier (sid) 1 while process
5670 has sid = 2. Note that the events also reveal the lines
of code at which the messages were logged, namely lines 365
and 644 of the QuorumCnxManager class.

The most interesting part of the diagram is arguably the
leader election procedure though, since it is one of the major
applications of fault-tolerant consensus protocols. When the
two quorum peers are connected, server 1 triggers a new leader
election (see event 2 ). In Zookeeper, each server can be in one
of the following states: LOOKING, FOLLOWING, LEADING
and OBSERVING. At the beginning of the execution, all
servers are in the LOOKING state and vote in themselves
to be the leader by sending notifications to the other servers
with the leader field set to their sid (see messages 4 , 5

and 6 ). If a server receives a notification with a sid higher
than its own, then it updates its vote proposal to the higher
sid and broadcasts the new vote proposal to the rest of the
quorum. Note that, since there are no client requests during
this execution, the last seen transaction identifier zxid remains
unchanged for both servers. Otherwise the servers would vote
for the peer with higher zxid.

In a nutshell, the diagram of Figure 5 reveals the following
leader election protocol in Zookeeper:
• Server 1 sends the vote message 4 with payload
{“leader” : 1} to server 2;

• Server 2 sends the vote message 5 with payload
{“leader” : 2} to server 1;

• Server 1 receives the vote message sent by server 2,
updates its vote proposal for the latter because it has
higher sid, and sends back the updated vote – message
6 with new payload {“leader” : 2} – to server 2;

• Server 1 and server 2 update their state from LOOKING
to FOLLOWING 5 and LEADING 6, respectively, as indi-
cated by the log messages.

A further analysis of this space-time diagram also allows
drawing some conclusions regarding the Zookeeper’s behavior:

a) Notification timeout: The message 4 is sent twice
due to a timeout that occurs when a server does not receive
enough notifications within a given time frame.

b) Message partitioning: The sending of a message is
actually partitioned into several SND events, i.e., to write
syscall executions. Inspecting the Zookeeper’s source code7,
we noticed that the messages sent during the leader election

5FastLeaderElection:636 - leader=2, ..., my id=1, my state=FOLLOWING
6FastLeaderElection:636 - leader=2, ..., my id=2, my state=LEADING
7See class QuorumCnxManager at line 698.
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Fig. 6: Performance impact on Zookeeper execution caused by
tracing with strace.

protocol are composed by an integer and a buffer. The integer
is sent by executing the write syscall four times, while sending
the buffer requires a single write invocation.

c) Causality: The diagram shows that messages 4 and
5 are not causally related, because the sender and receiver

threads execute concurrently. In contrast, there is a causal
relationship between messages 5 and 6 based on an state
change. Upon reception, message 5 is added to a queue by
the receiver thread. Afterwards, the sender thread dequeues
the message, processes it (i.e., updates the vote proposal of
server 1), and sends message 6 to server 2. Therefore, 5 →
receiver thread enqueues message → sender thread dequeues
message → change of vote proposal → 6 .

B. Performance Impact of Syscall-level Tracing
We developed a micro-benchmark to evaluate the perfor-

mance overhead imposed on Zookeeper due to tracing syscalls
with strace. The micro-benchmark consists of a client issuing
requests to two Zookeeper servers. Concretely, the client
performs 10K iterations of four operations: i) check whether a
znode exists, ii) create a new znode, iii) check again whether
the znode exists, and iv) delete the created znode.

Figure 6 compares the average duration of an iteration (in
milliseconds) between a vanilla execution of Zookeeper and an
execution with strace. As expected, enabling the tracing affects
negatively the runtime performance, causing Zookeeper to be
1.7× slower comparing to the baseline.

C. Scalability of Constraint Solving
Depending on the debugging level, message logs may

contain hundreds or thousands of entries. In order to better
understand how the constraint solving time varies with an in-
creasing amount of log entries, we ran the same configuration
of Zookeeper for INFO and DEBUG logging levels. To further
increase the log size, we duplicated the number of entries on
both cases log. The resulting logs contained 568 events for the
DEBUG level and 342 events for the INFO level.

The time required by Z3 to solve the constraint models
for both log files is depicted in Figure 7. The results show
that adding the DEBUG-level log events to the model caused
the solver to take 3.18× more time to find a solution than
with an INFO-level log. Although a trade-off must be made
between the duration of the constraint solving and the amount
of information logged, we believe that Falcon is useful in
practice and much more scalable than manual log analysis.
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Fig. 7: Time spent on solving the generated models for both
levels of debugging: INFO and DEBUG. Solving the model
that contains DEBUG-level logs significantly increases the
duration of model solving.

VI. RELATED WORK

Similarly to Falcon, prior work has also focused on tracing
distributed systems executions for performance and correct-
ness analysis.

Sherlog [2] is a tool that analyses source code and runtime
logs in order to isolate the cause of errors occurred at produc-
tion. However, it assumes that the log is generated on single
machine, hence not being suitable for distributed systems.

DTrace [13] and Fay [14] are two dynamic instrumentation
systems able to help diagnosing performance degradation
issues. Unlike Falcon though, they are not capable of estab-
lishing causality relationships between events.

X-Trace [8] is a tracing framework that provides a com-
prehensive view of distributed systems, using execution trees
constructed from propagated metadata within each network
protocol. Dapper [7] is a tracing infrastructure developed
by Google to trace end-to-end requests in Google services.
These traces are generated through RPC instrumentation, with
support for annotations. Magpie [6] is an online modeling
system that correlates interactions, or events, between compo-
nents in order to generate a performance model of the system.
Pinpoint [15] and Pivot Tracing [5] are similar to Magpie but
allow the execution of distributed queries during the analysis
process. Canopy [4] is an end-to-end performance tracing tool,
developed by Facebook, that records causally-related perfor-
mance data from an end-to-end execution path. Although these
tools and frameworks are designed for diagnosing performance
issues, they could be combined with Falcon in that their
traces could be part of the Falcon’s pipeline. Moreover, as
these systems do not provide data visualization features, an
integration with Falcon would further improve their usefulness
for in-house log analysis and debugging.

VII. CONCLUSION

In this paper we introduce Falcon, an extensible tool
pipeline for combining and visualizing log data from several
data sources. The key contribution of this tool is the ability to
merge log data from multiple sources and establish happens-
before relationships between events, providing a coherent
diagram for a visual analysis.

The tool is applied to Zookeeper and demonstrated with a
syscall trace and log4j log files. The resulting diagram helps in

understanding how remote threads interact among themselves
and what messages were exchanged to execute a given task.
Clearly, the combination of hundreds of events that is ordered
by the SMT solver to produce a trace would clearly be
unfeasible manually. Additionally, we assess the performance
impact on syscall-level tracing in Zookeeper, showing that the
impact is tolerable, in line with what is expected from a more
detailed log level configuration in log4j.
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