
Minha: Large-Scale Distributed Systems Testing1

Made Practical2

Nuno Machado3

Teradata & INESC TEC4

nuno.machado@teradata.com5

Francisco Maia6

INESC TEC7

franciso.a.maia@inesctec.pt8

Francisco Neves9

INESC TEC & U.Minho10

franciso.t.neves@inesctec.pt11

Fábio Coelho12

INESC TEC & U.Minho13

fabio.a.coelho@inesctec.pt14

José Pereira15

INESC TEC & U.Minho16

jop@di.uminho.pt17

Abstract18

Testing large-scale distributed system software is still far from practical as the sheer scale needed19

and the inherent non-determinism make it very expensive to deploy and use realistically large20

environments, even with cloud computing and state-of-the-art automation. Moreover, observing21

global states without disturbing the system under test is itself difficult. This is particularly troubling22

as the gap between distributed algorithms and their implementations can easily introduce subtle23

bugs that are disclosed only with suitably large scale tests.24

We address this challenge with Minha, a framework that virtualizes multiple JVM instances25

in a single JVM, thus simulating a distributed environment where each host runs on a separate26

machine, accessing dedicated network and CPU resources. The key contributions are the ability27

to run off-the-shelf concurrent and distributed JVM bytecode programs while at the same time28

scaling up to thousands of virtual nodes; and enabling global observation within standard software29

testing frameworks. Our experiments with two distributed systems show the usefulness of Minha30

in disclosing errors, evaluating global properties, and in scaling tests orders of magnitude with the31

same hardware resources.32

2012 ACM Subject Classification Computing methodologies → Distributed computing methodolo-33

gies; Software and its engineering → Software testing and debugging34

Keywords and phrases Distributed software testing; Large scale distributed systems; Simulation35

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2019.3236

Funding This work is financed by National Funds through the Portuguese funding agency, FCT –37

Fundação para a Ciência e a Tecnologia within project: UID/EEA/50014/2019.38

1 Introduction39

Formal validation and verification tools are increasingly practical and of paramount import-40

ance in developing distribute algorithms. However, they work over models rather than actual41

runnable code [21, 8] and with assumptions that do not hold in practice [11]. In addition to42

outright bugs introduced by the translation from algorithm to runnable code, such as race43

conditions, a major problem lies in aspects that are abstracted by models and are revealed44

© Nuno Machado and Francisco Maia and Francisco Neves and Fábio Coelho and José Pereira;
licensed under Creative Commons License CC-BY

23rd International Conference on Principles of Distributed Systems (OPODIS 2019).
Editors: Pascal Felber, Roy Friedman, Seth Gilbert, and Avery Miller; Article No. 32; pp. 32:1–32:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-1531-1875
mailto:nuno.machado@teradata.com
https://orcid.org/0000-0003-0729-4569
mailto:franciso.a.maia@inesctec.pt
https://orcid.org/0000-0003-2165-5375
mailto:franciso.t.neves@inesctec.pt
https://orcid.org/0000-0002-0188-6400
mailto:fabio.a.coelho@inesctec.pt
https://orcid.org/0000-0002-3341-9217
mailto:jop@di.uminho.pt
https://doi.org/10.4230/LIPIcs.OPODIS.2019.32
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Minha: Large-Scale Distributed Systems Testing Made Practical

only in large scale tests [19]. A common problem is a situation in which the complexity of an45

operation (e.g., searching) is not apparent in testing as some data structure (e.g., a buffer) is46

mostly empty unless there is a large number of participants or with congestion, that never47

happens with small scale testing.48

For example, the correctness proof of the accrual failure detector employed by Cas-49

sandra [15] assumed a negligible processing time of heartbeat messages. However, in practice,50

Cassandra uses variable length messages during membership changes in the cluster that may51

consume significant transmission and computation time. This mismatch between protocol52

design and implementation caused constant flapping problems in 500+ node deployments,53

preventing the cluster from stabilizing and scaling [3]. Flapping is a cluster instability problem54

where the status of the nodes is continuously switching between up and down.55

Unfortunately, testing and debugging such systems is extremely challenging, mainly due56

to the following reasons:57

Non-determinism and huge state space. Distributed executions often entail thousands of58

non-deterministic, concurrent events (e.g. message arrivals, node crashes, and timeouts)59

that, depending on the order in which they occur, cause the system to behave differently.60

Although most event sequences are correct, some incorrect timings of events result in severe61

damage, such as data corruption or system downtime [23]. In particular, previous work has62

shown that real-world distributed applications are especially prone to bugs stemming from63

message races [23, 26]. For instance, bug 2212 in ZooKeeper’s issue repository reports a64

(rare) scenario in which a new node joining the cluster cannot become a leader due to a race65

condition between a message from the atomic broadcast protocol and one from the leader66

election protocol [4]. This bug causes a 3-node ZooKeeper cluster to stop working in the67

presence of a single failure, when in fact the existence of a majority of two nodes alive is68

sufficient for the system to operate.69

Lack of resources for testing at scale. Distributed systems are typically developed to be70

deployed on a massive number of independent nodes (e.g. Cassandra [1], Hadoop [2], etc).71

Alas, as testing with close-to-production conditions can be prohibitively costly and time72

consuming, these applications are often debugged on small/medium-size deployments that73

prevent certain faulty behavior from manifesting [24]. Attempts to address scalability in74

testing environments include cloud computing and virtualization technologies [14, 38], but75

software validation is still the limiting factor in distributed software development [12].76

Difficulty in checking global properties at runtime. In general, large-scale distributed protocols77

are designed in such a way that nodes make decisions based only on local information (or78

a partial view of the system). On the other hand, the correctness of these protocols often79

implies certain global properties or invariants to hold, which can be hard to verify without a80

globally-consistent snapshot of the system. For example, Pastry [33] is a distributed hash81

table whose routing algorithm requires each node to maintain a list with its physically closest82

peers. Thus, to assess the correct execution of Pastry, one needs to first obtain the complete83

network overlay, then collect the neighbor lists from all nodes and, finally, compute the84

distances in both cases to check whether the references in the lists actually correspond to85

the closest peers.86

Contribution. In this paper we propose Minha,1 a framework that combines virtualization87

and simulation techniques for making large-scale distributed systems testing practical by88

1 Minha is available as open source at http://www.minha.pt.

http://www.minha.pt

Nuno Machado et al. 32:3

providing a unique trade-off between scale and observation completeness. In particular,89

Minha addresses the problems introduced in the translation from algorithm to runnable90

code and message races, such as experienced in Cassandra [3] and Zookeeper [4], with two91

contributions:92

Scaling-up centralized simulation. The technique proposed in CESIUM [6] is scaled up to93

thousands of distributed nodes by reducing the processing and memory requirements for94

node isolation. Moreover, it is scaled to execute off-the-shelf distributed applications written95

in modern Java while simulating key environment components, reproducing the concurrency,96

distribution, and performance characteristics of real-world deployments.97

Providing meta-interfaces for observation and automation. Minha provides a programming98

interface to orchestrate large-scale virtual deployments of complete programs or standalone99

middleware layers with application stubs, aimed at being used within standardized testing100

frameworks. The same interface eases the collection of consistent snapshots and traces from101

distributed executions, suitable for visualization or evaluating global properties.102

We evaluated Minha on a peer sampling service protocol and a large-scale key-value103

store. The results show that Minha is not only able to assess properties over a coherent,104

global snapshot of the system without imposing runtime overhead while at the same time105

allowing tests with a large number of nodes to run in cost effective way.106

The rest of this paper is structured as follows. Section 2 outlines the state-of-the-art107

in simulation and emulation for testing distributed systems. Section 3 describes how the108

design and implementation of Minha provide a new trade-off between scale and observation109

completeness and scale. Sections 4 and 5 evaluate Minha. Section 6 concludes the paper.110

2 Related Work111

The ideal approach to test distributed systems software for race conditions is the use of112

implementation-level model checkers. Model checkers, such as MaceMC [18], Demeter [13],113

MoDist [39], dBug [35] and SAMC [22], intercept non-deterministic events of local and dis-114

tributed programs (e.g. message arrivals, node crashes, and timeouts), and permute their115

ordering in systematic runs. This approach is very effective in discovering concurrency bugs,116

as it virtually explores the whole system state space. However, for large-scale applications,117

distributed model checking becomes unpractical and starts suffering from scalability issues118

due to state space explosion [22].119

The next best approach is to run tests and then evaluate system-wide properties by120

logging the local state of each node independently along the execution and, periodically,121

send those logs to a centralized machine to be combined into a globally-consistent snapshot122

of the system that allows checking the desired predicates. For deployed systems, D3S [27]123

proposes a simple language for writing distributed predicates that are checked on-the-fly124

at runtime. DCatch [26], in turn, aims to detect distributed concurrency bugs by resorting125

to a happens-before (HB) model. This work encodes the event causality into HB rules and126

builds a graph representing the timing relationships of several distributed concurrency and127

communication mechanisms. This approach has some drawbacks though. First, the execution128

details to be recorded at runtime must be defined a priori. Second, monitoring the nodes’129

local state is intrusive and induces both performance and space overhead, and finding the130

sweet spot between overhead and the necessary amount of information to be traced is far131

from trivial [27]. Third, setting up and running large scale tests requires a corresponding132

large scale distributed infrastructure to be available.133

OPODIS 2019

32:4 Minha: Large-Scale Distributed Systems Testing Made Practical

An important class of bugs introduced in the translation from algorithms to implement-134

ations, for instance, caused by the complexity of library operations and data structures135

used, can often be disclosed by running the system at large scale. Distributed systems136

researchers have been building platforms to address this challenge. EmuLab [16] provided137

a set of dedicated computer nodes and networking hardware that could be reconfigured to138

mimic different large scale systems. PlanetLab [32] uses a decentralized approach, therefore139

enabling a much larger and realistic platform to run off-of-the-shelf code. Unfortunately,140

experiments in PlanetLab are cumbersome to configure, deploy, and run. Splay [25] aims141

at easing the task of configuring the environment and running large-scale experiments, but142

limits the development to a specific framework and the Lua language.143

The use of virtual machines and containers in public clouds, together with state-of-the-art144

orchestration software [12] makes it much easier for any developer to set up and run large tests.145

However, virtual nodes compete over the same physical resources, hence impacting negatively146

the performance of the system being evaluated and the accuracy of the measurements [34],147

possibly hiding the problems. Moreover, even if possible, it is still expensive to conduct148

extensive testing in public clouds.149

Given the cost of running large scale tests and the difficulties in obtaining reliable,150

reproducible results, a number of proposals have focused on exploiting simulation to test151

actual implementations. Simulation is used extensively for distributed systems research,152

allowing simplified models to be tested in a very large scale [31], but they don’t capture153

timeliness properties of implementation decisions and require code to be written in event-154

driven style, hence, with inversion of control. As an example, Neko [36] offers the ability to155

use simulation code as actual code, as long as its event-driven API is used in place of the156

standard Java classes.157

An interesting trade-off is achieved by JiST [7] (Java in Simulation Time), a simulation158

kernel that allows event-driven simulation code to be written as Java threaded code, but159

avoids the overhead of a native thread for each simulated thread by using continuations.160

Unfortunately, this simulation kernel does not virtualize Java APIs and thus cannot be used161

to run most of the existing Java code. Moreover, it does not reflect the actual overhead of162

Java code in simulation time.163

CESIUM [6] proposes the centralized simulation approach, in which the time effectively164

used to execute implementation code for each event is measured and reflected into simulation165

time. This is useful to detect issues such as the Cassandra failure detector bug [3], as it166

captures the timeliness properties of implementation code. This does not however address167

the general Java platform API and thus does not allow general code to be run. Moreover, by168

using Java class loaders for virtualization it imposes a large memory overhead and restricts169

simulations to a small number of nodes. UMLsim [5] is a similar proposal at the operating170

system level, that virtualizes Linux while providing a simulated timeline and network. By171

requiring a full Linux installation for each node, it restricts attainable scale even more that172

CESIUM.173

The ideal approach would thus have the ability to run unmodified implementation code,174

such as possible by using cloud computing, with the frugality and scalability of simulation, the175

ability to reproduce timeliness properties of CESIUM, and the ability to capture distributed176

snapshots of distributed debuggers. This the challenge addressed in this paper with Minha.177

3 Minha Framework178

Minha is a practical framework for testing large-scale distributed systems. Minha virtualizes179

Nuno Machado et al. 32:5

Execution
on the JVM

JVM

…

Virtual JVM

Target Application

Transformer

Virtual JVM

Transformer

Virtualizer

Network CPU Time File System

Simulation Kernel

Tracer

Target Application

Hardware

MINHA libs
Target App. libs

User-defined
Test Driver Log Analysis

M
IN

H
A

Figure 1 Execution flow and architecture of Minha.

multiple JVM instances within a single JVM and simulates key environment components,180

thus allowing reproducing the concurrency, distribution, and performance characteristics of181

an actual distributed system at a much lower resource cost.182

The usage of Minha is shown at the top of Figure 1. From left to right, a test driver183

defines the execution scenario, such as the number of instances of the target application to184

be created and the global properties to be checked. The test driver is then executed, along185

with the target application and Minha libraries, on an off-the-shelf JVM. Properties can be186

checked in runtime and logs stored for further off-line checking and visualization.187

At runtime, Minha acts as an interposition layer that takes control of the execution and188

steers it according to the testing scenario defined in the test driver. As show also in Figure 1,189

the main components of Minha are: the simulation kernel, the virtualizer, the transformer,190

and the tracer. Briefly, the transformer converts application and middleware code into an191

event-driven simulation that interacts with models provided by the virtualizer. Both run192

on an event-driven simulation kernel. The tracer collects information for off-line use. The193

remainder of this section describes how the design and implementation of Minha address194

the twin challenge of scale and observability of distributed systems software.195

3.1 Achieving scale196

Simulating multiple processes in the JVM requires isolating their code and preventing their197

executions from interfering with each other. Prior work typically addresses this issue by using198

a separate Java class loader for each process [6], that provides private copies of code and data199

for each virtual process. However, this approach severely limits attainable numerical scale,200

as each virtual process has to load, transform, compile, and store its own copy of each class.201

A second aspect of scale is the size and complexity of the application and middleware202

that can be loaded. Current systems make use of large portions of the Java platform API in203

addition to the basic networking and time interfaces that have been intercepted in previous204

proposals [6]. Simply replacing all Java API with simulation models would lead to a very205

large development effort while impairing compatibility.206

Minha’s transformer addresses these challenges by using single class loader for all virtual207

OPODIS 2019

32:6 Minha: Large-Scale Distributed Systems Testing Made Practical

processes and converts the original platform libraries to use simulation models of external208

resources, as happens for user provided middleware. As process isolation still needs to209

be enforced and the JVM forbids class loaders from rewriting native classes, Minha uses210

the ASM Java bytecode manipulation and analysis framework [9] to perform the following211

bytecode modifications:212

Redirecting references to virtualized classes. Direct references to classes that are replaced213

by simulation models (e.g., java.net.Socket) are rewritten. Simulation models need then214

to be written, with same same interfaces, and containing simulation logic to reproduce215

their behaviors. This can however be done incrementally: As new applications demand216

new platform interfaces that haven’t yet been modeled, they fail and report the problem.217

Experience shows that having implemented models for a moderate subset of the platform218

API supports many interesting distributed middleware components.219

Redirecting static instance variables. This transformation moves static instance variables to220

regular instance variables in an auxiliary class. It then creates and uses static setter and221

getter methods for each of them. These methods use a map in the simulation model of each222

process to store and retrieve the correct instance, thus enforcing isolation.223

Redirecting references to renamed classes and methods. Transformed platform classes are224

renamed to a separate package, thus circumventing the restriction to modifying them.225

Therefore, references to these classes and to classes that are replaced with simulated ver-226

sions are re-directed to the new package by transforming their respective callers. Indi-227

vidual static methods in platform classes that do not need to be replaced as a whole (e.g.,228

System.currentTimeMillis()) are simply redirected to simulated versions.229

Moreover, a subset of classes, containing the simulation kernel and environment models,230

are kept global by delegating their load to the system’s class loader. In contrast to isolation231

provided by using multiple class loaders and the Java security manager, the isolation between232

virtualized nodes in Minha is not designed for containing any malicious code or attack. This233

is however not needed, as Minha is used only for testing and all nodes are inherently trusted.234

This has the advantage of providing a controlled channel for virtual JVMs to interact with235

each other, that can easily be exploited by the user-defined test driver.236

Finally, the last challenge to scale is in the discrete event simulation kernel. It keeps237

a list of future events per simulated timeline, scheduled to execute at target simulation238

instants. To scale up to large simulations, Minha’s simulation kernel supports multiple239

timelines for parallel execution in multi-core systems. Timelines in a single simulation are240

conservatively synchronized with a time window [28]: current time for events executing in241

parallel in different timelines differs by at most a constant W . This exploits the fact that242

Minha maps one or more simulated hosts to each timeline and that the network latency is at243

least W . Therefore, message delivery events scheduled on a different timeline are guaranteed244

to be properly ordered.245

Parallel simulation in Minha is optimized to use one timeline for each available processor246

core. This is achieved by using a concurrent non-blocking data structure to store the event247

list and a non-blocking algorithm to keep track of the synchronization window. In detail,248

each thread tries to update the global lowest time of an event executing across all timelines,249

spinning until its next event handler can be safely executed. This approach works well in cases250

where events are evenly spread across all timelines, as typically happens when simulating251

large distributed systems in a few processor cores.252

Nuno Machado et al. 32:7

test driver
code

application
code

test driver
code

at.pause() at.pause()

e1.run() e2.run() e3.run()

Ap
pl

ic
at

io
n

Th
re

ad

Simulation
Kernel

at.wakeup() at.wakeup() at.wakeup()

at.pause()

startTime()

at.pause()

stopTime()

simulation time delta

Event
Handling

User Level

Simulation
Level

C
on

tr
ol

 T
hr

ea
d

1

2
3

4

simulation time delta
5

6

real time delta

7 8

Figure 2 Example of how simulation time and execution time are coordinated in Minha.

3.2 Achieving observability253

Minha’s programming interface is targeted at automated tests and scripting and combines254

reflection, to represent entities in the simulation domain, with an interface to inject events255

and interact with those entities.256

To set up and control the simulation, the test driver API provides the following entities257

that describe and manipulate the simulated system: World represents the system as a whole,258

keeping track of global simulated time and allowing hosts to be created and enumerated.259

A Host describes a simulated host with processing and storage resources and attached to260

the network with an address. It allows creating and enumerating simulated processes. A261

Process keeps a private address space with its own copy of static variables and allows262

invocation of methods. Both hosts and processes can be terminated, to simulate crash faults.263

Execution in the context of a simulated process is started by creating an Entry proxy for264

some interface and scheduling an invocation. Each entry point corresponds to a thread in the265

simulated process. Using the interface, it can specify arbitrary delays or an absolute schedule266

and if it is executed synchronously, implicitly running the simulation until the invocation267

returns, or asynchronously, providing a future to wait for and retrieve the result whenever268

the simulation has advanced enough. The simulation can also be run for predetermined269

periods of time, easing periodic observation. The API also provides the ability to exit the270

simulation to execute code that performs global observation or logging. This is achieved with271

an Exit proxy that ensures that the simulation is stopped on invocation and restarted on272

return. An example using the API is shown in Figure 3 and further discussed in Section 4.273

The main challenge addressed is ensuring that only consistent global states can be274

inspected, regardless of the simulation containing multiple threads in a number of virtual275

processes. First, all blocking operations, such as synchronization and calls to the platform,276

are replaced with calls to simulated synchronization primitives by modifying the compiled277

bytecode at load time. Second, the transformed code executes consistently with simulation278

time. This ensures that: i) the application thread advances only in the context of an279

simulation event; ii) the execution time observed is reflected in the usage of a simulated CPU280

core; and iii) the waiting time (e.g., when reading from disk) is computed by the simulation281

and not by actual contention.282

Figure 2 shows in detail how this is achieved. From the bottom to the top, the Control283

OPODIS 2019

32:8 Minha: Large-Scale Distributed Systems Testing Made Practical

Thread (CT) originates in the Simulation Kernel and executes discrete Event Handling284

procedures. In contrast to common discrete event simulation practice, these do not directly285

modify model variables. Instead, they allow an Application Thread (AT) that executes test286

driver and application code at User Level to advance. An AT thus progresses as follows:287

(1) When started, the AT stopped using the pause() method to wait for its turn; when the288

corresponding event is scheduled by the Simulation Kernel, the CT signals the AT, that can289

then execute test driver code (2). When the test driver is done, (3) it starts accounting real290

time with startTime(). This pauses the AT and returns control to the Simulation Kernel,291

to wait for its turn (4). When simulation time has advanced, the AT is finally signaled to292

start executing application code (6). The time elapsed while executing application code is293

measured with the CPU cycle counter in stopTime() (7) and used to advance simulation294

time accordingly. This means that further events, either in application or test driver code (8)295

will be scheduled appropriately in simulation time.296

This allows the passing of real time while executing code to influence simulation time,297

thus reproducing the performance characteristics as needed to disclose scaling bugs. However,298

since it is an event driven simulation, global state is consistent and can be observed by direct299

inspection while the simulation is stopped. Moreover, as logging is done in user-defined300

test driver code, outside the periods that measure real time, it has no impact in measured301

performance and does not disturb the system under test.302

Note that the test driver thread could get blocked in synchronization primitives within303

the target application and middleware, leading to a deadlock. However, as synchronization304

primitives have been replaced by simulated counterparts, these will recognize that the305

invoking thread is the test driver and avoid blocking it. The developer writing the test driver306

has however to be careful to make sure that the code used for observation is not susceptible307

to inconsistent internal state.308

In addition to directly checking properties, the tracer component allows logging events of309

interest at runtime for off-line processing. Currently, Minha is configured to trace events310

regarding: thread synchronization (i.e. fork/join/start/end events), inter-node communic-311

ation (i.e. socket send/receive events), and read/write accesses to variables indicated by312

the programmer, if any. Recall that capturing memory accesses requires instructing the313

transformer to dynamically instrument the target application’s bytecode with calls to the314

tracer, which may incur additional overhead during the execution. In contrast, all the315

remaining events are captured by Minha at the simulator side (i.e., outside the application),316

hence they do not impose any slowdown, as opposed to what happens in a real deployment.317

An additional feature of the traces produced by Minha is that events are logged in a318

coherent global order, due to the framework’s centralized and virtualized nature. This is319

particularly useful for debugging. In fact, Minha comes with a built-in diagram generator320

that provides a visual representation of the execution according to the information stored in321

the trace file. Section 4.2 illustrates the benefits of this feature using the Cyclon example of322

Section 4.323

The event trace is produced in JSON format, which can later be consumed by external324

tools. Events are stored as JSON objects, containing fields regarding: the thread identifier,325

the type of event (as indicated in tracer’s description in Section 3), the timestamp, and, for326

inter-node communication events, a message unique identifier, and the source and destination327

node addresses. Minha’s built-in visualizer consists of a Javascript module that uses the328

SVG.js library to generate a graphical representation of the event trace as a space-time329

diagram [20]. An example is shown in Figure 4 and discussed in the next section.330

Nuno Machado et al. 32:9

Algorithm 1 – Cyclon Active Thread at Node p

Init:
Vsize ← size of p’s partial view
view ← p’s view containing Vsize references to other peers
Ssize ← number of peers exchanged during a shuffling

operation (Ssize ≤ Vsize)
for every T time units do

// increase by one the age of all neighbors
ageGlobal(view)
// pick node q with highest age among all neighbors
q = getOldestPeer(view)
// select a random subset of Ssize neighbors
peers = selectPeers(view, Ssize)
// send list of peers to q, indicating that this message is a request for a shuffle
send(q, {REQ, p, peers})

end for

4 Use Case: Peer Sampling Service331

In this section, we show how Minha can be used to test the properties of the overlays332

generated by the peer sampling service (PSS) Cyclon [37, 29]. A PSS is a mechanism, widely333

used by gossip-based peer-to-peer systems, that provides each node of the system with a334

partial view of the network. The overlay network used by the gossip protocol to spread335

information is thus defined by the logical graph that emerges from the union of all nodes’336

views at a given instant. Since the effectiveness and efficiency of the dissemination depends337

heavily on the properties of the overlay, the PSS refreshes each node’s view from time to338

time to account for peer joins and leaves.339

4.1 Test application340

For the purpose of this example, we will focus on a particular PSS named Cyclon [37]. In a341

nutshell, the Cyclon protocol consists in a series of shuffle rounds, where pairs of neighbor342

nodes exchange a subset of randomly sampled peers from their views. The shuffle procedure343

works as follows. Each node assigns an age value to the node references in its view. This344

value is incremented by one at the beginning of a new exchange round, every T units of345

time. Upon starting a new shuffle, nodes pick the neighbor with highest age and send to it346

a random subset of other peers in their view, replacing the oldest node’s reference with a347

self-reference of age 0. In turn, when a shuffle message is received, nodes first reply with a348

subset of peers randomly selected from their own view, and then update their views with the349

references received, replacing the entries previously sent. As a result of shuffle operations,350

nodes alive have their views refreshed and nodes that left the system are eventually removed351

from every view. This way, Cyclon is able to cope with dynamism.352

The experimental results in Cyclon’s original paper [37] shown that this protocol is able353

to generate network overlays with properties similar to random graphs, even starting from354

non-random topologies. This ability is particularly relevant for peer-to-peer systems that355

have to handle high churn, as random overlays exhibit low diameter and are able to maintain356

connectivity even in the presence of massive node failures.357

The results presented in the original paper were obtained solely from simulations though,358

so it remains unclear how would the protocol behave in an actual distributed system. In such359

a real-world setting, the Cyclon protocol can be implemented by means of two execution360

threads: an active thread that is responsible for initiating a new shuffle with a neighbor,361

and a passive thread that operates as a message handler, which receives and processes the362

OPODIS 2019

32:10 Minha: Large-Scale Distributed Systems Testing Made Practical

Algorithm 2 – Cyclon Passive Thread at Node p

while true do
// receive a list of peers sent by node q
{t, q, peersRcv} = receive()
if t = REQ then

// select a random subset of Ssize neighbors
peersSnd = selectPeers(view, Ssize)
// send list of peers to q, indicating that this message is a reply to the shuffle
send(q, {REP, p, peersSnd})

end if
// incorporate list of peers received into its own view
updateView(view, peersRcv)

end while

1 //create a new simulation with 500 Cyclon peers
2 World world = new Simulation();
3 Entry<ICyclon>[] peers = world.createEntries(500, ICyclon.class, CyclonImpl.class.

getName());
4

5 //start Cyclon peers
6 for (int i = 0; i < 500; i++){
7 peers[i].queue().run();
8 }
9

10 //allow nodes to bootstrap
11 world.run(1,TimeUnit.SECONDS);
12

13 //let the application code execute for 5s
14 //and then observe the overlay
15 for(int i=0; i <= 100; i++) {
16 world.run(5 , TimeUnit.SECONDS);
17 for(ICyclon c : peers){
18 //inspect node’s view and store it into log
19 logView(c.getView());
20 }
21 }

Figure 3 Test driver for running Cyclon on Minha

messages sent by other nodes. The portions of Cyclon executed by the two threads are363

detailed in Algorithms 1 and 2, respectively.364

4.2 Test driver365

To conduct the experiment in Minha, one can use a test driver like the one presented in366

Figure 3. The test driver starts by creating a new simulation scenario with 500 hosts, each367

corresponding to a Cyclon node, using Minha’s API (lines 2-3). Nodes are then prepared368

for execution by enqueuing the method run() in the simulator (lines 6-8). This method is369

responsible for spawning Cyclon’s passive and active threads, as well as initiating the node’s370

view with references to its 11 subsequent neighbors.371

The test driver proceeds with an instruction to let the simulation run for one second,372

thus allowing the Cyclon nodes to bootstrap (line 11). The core of the test run consists of373

100 simulation cycles, in which Minha lets the application code of each instance execute for374

5 seconds, before giving back the control to the test driver code (lines 15-21). At this point,375

the test driver consults the local state of each node, namely the composition of its view, and376

logs it into a trace file (lines 17-20). We highlight that these observations are performed377

Nuno Machado et al. 32:11

0 CREATE

CyclonActive-2

CREATE

CyclonActive-3

CREATE

CyclonActive-4

CREATE

CyclonActive-1

1 START

CyclonPassive-1

START

CyclonPassive-4

START

CyclonPassive-3

START

CyclonPassive-2

4 SND

5 SND

6 RCV

7

12 RCV

13 SND

14 RCV

15 RCV

...

SND
...

REQ
REQ

REP

REP

Time

atomicity violation
during shuffle

Figure 4 Space-time diagram generated by Minha’s visualizer from the event trace captured
during the simulation of Cyclon. The values on the left represent logical time ticks, whereas events
CREATE, START, SND, RCV, denote, respectively, the creation and beginning of a thread, and
the send and receive of a message. Messages labeled as REQ indicate shuffle requests and as REP
indicate shuffle replies. The dashed box highlights the fact that atomicity is not guaranteed during
a view exchange procedure, as new shuffle requests may arrive in the meantime.

transparently to the application and without incurring runtime overhead. Since all nodes378

are paused, the local views are obtained from a global snapshot of the system, thus allowing379

reenacting the actual overlay network at that exact moment.380

4.3 Log analysis381

Off-line log analysis is particularly well suited to discover message race conditions. As an382

example, we search logs obtained with Minha for cases in which a node is involved in more383

that one concurrent shuffle operations. This fact is not contemplated in the original Cyclon384

algorithm, nor in the simulations presented in the original paper [37].385

On the other hand, these atomicity violations can easily occur in real settings, and may386

hamper the properties of the overlay generated, especially in highly dynamic environments.387

Figure 4 illustrates a detail of a time-space diagram of the execution plotted from the event388

trace captured during the simulation for our experiment with Cyclon. To improve readability,389

we only depict the timelines of the two Cyclon threads (namely, the active thread and the390

passive thread) for the first four nodes. From the diagram, it can be observed that the active391

thread starts by spawning the passive thread and then proceeds to sending shuffle requests.392

In turn, the passive thread is responsible for receiving incoming messages and reply back to393

complete the view exchange, as defined by the protocol.394

This time-space diagram confirms the interesting scenario: The atomicity of a shuffle395

operation is not guaranteed in practice (see the dashed box in Figure 4). In fact, a node can396

receive a new shuffle request from a third node in-between swapping views with a neighbor.397

Since the view updates performed by the passive thread upon receiving shuffle requests and398

replies are not commutative, it results in a view that is not anticipated in the algorithm.399

A possible solution to address this issue is to store incoming requests in a queue until the400

awaited reply arrives [17].401

OPODIS 2019

32:12 Minha: Large-Scale Distributed Systems Testing Made Practical

 1

 10

 100

 1000

 10000

10 100 1000

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of Cyclon Peers

10 cycles
100 cycles

1000 cycles

Figure 5 Minha’s execution time (in log scale) for simulations considering different configurations
of Cyclon.

4.4 Scalability402

This section evaluates how Minha’s performance scales with the number of nodes simulated.403

In particular, we measured the execution time of Minha when varying both the number of404

nodes and the number of cycles considered in the simulation within the range {10, 100, 1000}.405

The experiments were performed on a machine with a 3.4 GHz Dual-Core Intel i3 Processor,406

8 GB of RAM and a 7200 RPMs SATA disk. The results, averaged for three runs, are407

depicted in Figure 5.408

As expected, the figure shows that Minha’s execution time grows proportionally to409

the size of the simulation both in terms of number of Cyclon peers and number of cycles,410

making it efficient and practical for in-house testing of large-scale distributed systems as a411

simulation of the Cyclon protocol with 1000 nodes and 100 cycles (which suffice to assess412

most properties of the overlay, as shown in Section 4.2) takes only around 13 minutes with a413

minimal hardware configuration.414

5 Use Case: Data Store415

In this section, we provide a second example of Minha using the DataFlasks peer-to-416

peer database system.2 This is used to show that Minha copes with an unmodified larger417

application that makes use of more features of the Java platform and external libraries.418

Moreover, we compare the scalability and cost of tests with the common alternatives of419

setting up a real distributed system or using virtual machines.420

5.1 Global Property Checking421

The DataFlasks distributed data store was designed to ensure availability of data in the422

presence of varying levels of node churn [30]. To assess this property, we ran DataFlasks423

on Minha with different levels of churn and wrote a test driver to compute the number424

of data replicas stored in the system at a given instant Churn is easily injected in using425

2 We used the version of DataFlasks publicly available at github.com/fmaia/dataflasks

Nuno Machado et al. 32:13

 10

 12

 14

 16

 18

 20

 250 300 350 400 450 500 550 600 650 700

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
re

p
lic

a
s

Time (s)

1% of churn
10% of churn
15% of churn

Figure 6 Minha’s dynamic property checking applied to the evaluation of DataFlasks’ replica
maintenance properties.

the test driver API by invoking close() on Host objects, to remove them from the system,426

or by creating new Host instances to bring them back. Computing the number of keys in427

the system requires inspecting the storage of each node to check the data it is holding and428

combining such information with that of the other nodes.429

In the experiments, we instructed Minha to run the verification code and compute the430

average number of replicas that the system holds at execution intervals of 1 second. We431

plot the results of the experiments in Figure 6 for a simulation of 700 seconds. The results432

show that, as expected, the average number of data replicas varies with churn (the higher433

the churn, the fewer replicas exist in the system), although DataFlasks is always able434

to eventually recover the keys lost. In fact, the system ends the experiment maintaining435

the expected mean number of data replicas. Checking the same property in a real-world436

deployment would require extensive logging and cumbersome synchronization mechanisms.437

5.2 Performance and Resource Usage438

For this experiment, we considered three different three different deployment configurations439

for DataFlasks:440

Configuration 1 (Commodity). We considered a deployment built from a set of several441

commodity hosts. Each commodity host is randomly selected at startup time from a pool of442

resources equipped with either i) a 3.1 GHz Dual-Core Intel i3 Processor, 8 GB of RAM and443

a 7200 RPMs SATA disk, ii) a 3.4 GHz Dual-Core Intel i3 Processor, 8 GB of RAM and a444

7200 RPMs SATA disk, or iii) a 3.7 GHz Dual-Core Intel i3 Processor, 8 GB of RAM and445

a SSD disk. All hosts are interconnected through a switched Gigabit Ethernet. The total446

number of commodity hosts available at deployment time was limited to 36, which aims to447

represent a scenario where the available resources for testing are not comparable with the448

equivalent to those expected in a production deployment.449

Configuration 2 (Virtual Machines). We considered a deployment built from a single server450

grade machine equipped with an 2.3 GHz Intel Xeon E5-2670 v3 Processor, 94GB of RAM451

and a 7200 RPMs SATA disk. This machine was configured to deploy a set of 32 virtual452

machines interconnected through a virtualized switched Ethernet.453

OPODIS 2019

32:14 Minha: Large-Scale Distributed Systems Testing Made Practical

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

8 16 32 64 128 256
cy

cl
e

s
(m

s)

Nodes

commodity
Minha

Virtual Machines

Figure 7 Time to execute the workload in the DataFlasks key-value store for the three
deployment configurations.

Configuration 3 (Minha). We considered a single commodity host, extracted from the pool454

of resources described in the first scenario, on which we deployed Minha.455

For each one of the previous configurations, we deployed DataFlasks with an increasing456

number of nodes within the range {8, 16, 32, 64, 128, 256}. We then performed the experiments457

by running a simple write workload on top of DataFlasks using YCSB [10], in a total458

of 5 independent runs for each configuration. For each experiment, we measured the time459

required to replicate data across all the necessary replicas and used it to compare the different460

configurations. Figure 7 depicts the experimental results.461

Figure 7 shows that besides scaling to larger system sizes than a configuration with462

multiple virtual machines, Minha is able to do it on a single commodity host that represents463

1/36 of the cost of a real deployment depicted in either the first or second configurations.464

These results support the claim that Minha is able to accurately simulate large-scale465

distributed systems with much less resources than traditional approaches.466

6 Conclusions and Future Work467

Distributed systems are notoriously hard to test, mainly due to their large state space and468

the difficulty in deploying large infrastructures. This paper addresses the challenges of scale469

and observability in Minha, a simulation framework aimed at easing the burden of testing470

large-scale distributed systems. Minha virtualizes multiple JVM instances within a single471

JVM, while simulating key environment components, thus reproducing the concurrency,472

distribution, and performance characteristics of an actual system. Minha also helps assessing473

the application’s correctness by allowing checking distributed properties on globally-consistent474

snapshots of the system. Moreover, due to time virtualization, these system-wide assertions475

can be performed transparently to the target application and without affecting its runtime476

performance.477

Our experiments with a large-scale key-value store and a peer sampling service show that478

Minha can accurately reproduce the characteristics of real-world deployments with fewer479

resources than traditional approaches, and is effective in assessing system-wide properties.480

We believe that Minha opens a number of interesting research opportunities in the field of481

distributed systems testing and debugging. For example, Minha can be extended with model482

checking capabilities to systematically explore the execution space of distributed systems483

and discover new bugs. Furthermore, Minha’s event traces, which are totally ordered and484

logged without any runtime overhead for the target application, can be combined with bug485

Nuno Machado et al. 32:15

detection techniques to also detect problems automatically.486

References487

1 Apache Cassandra. http://cassandra.apache.org.488

2 Apache Hadoop. http://hadoop.apache.org.489

3 Bug CASSANDRA-6127: vnodes don’t scale to hundreds of nodes. https://issues.apache.490

org/jira/browse/CASSANDRA-6127.491

4 Bug ZOOKEEPER-2212: distributed race condition related to qv version. https://issues.492

apache.org/jira/browse/ZOOKEEPER-2212.493

5 Werner Almesberger. umlsim-a uml-based simulator. In 10th International Linux System494

Technology Conference (Linux-Kongress 2003), pages 202–213, 2003.495

6 G. A. Alvarez and F. Cristian. Applying simulation to the design and performance evaluation496

of fault-tolerant systems. In SRDS ’97, pages 35–42, Oct 1997.497

7 Rimon Barr, Zygmunt J Haas, and Robbert van Renesse. Jist: An efficient approach to498

simulation using virtual machines. Software: Practice and Experience, 35(6):539–576, 2005.499

8 Y Bertot and P Castéran. Interactive theorem proving and program development—coq’art:500

The calculus of inductive constructions (2004).501

9 Eric Bruneton, Romain Lenglet, and Thierry Coupaye. Asm: A code manipulation tool to502

implement adaptable systems. In In Adaptable and extensible component systems, 2002.503

10 Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.504

Benchmarking cloud serving systems with ycsb. In SoCC ’10, pages 143–154, New York, NY,505

USA, 2010. ACM.506

11 Pedro Fonseca, Kaiyuan Zhang, Xi Wang, and Arvind Krishnamurthy. An empirical study on507

the correctness of formally verified distributed systems. In EuroSys ’17, New York, NY, USA,508

2017. ACM.509

12 F. Gortázar, M. Gallego, M. Donato, E. Pages, A. Edmonds, G. Tuñón, A. Bertolino, G. De An-510

gelis, A. Cervantes, T. Bohnert, A. Willner, and V. Gowtham. The ElasTest platform: Support-511

ing automation of end-to-end testing of large complex applications. ElasTest project whitepaper,512

November 2018. URL: https://elastest.io/resources/ElasTest_white_paper.pdf.513

13 Huayang Guo, Ming Wu, Lidong Zhou, Gang Hu, Junfeng Yang, and Lintao Zhang. Practical514

software model checking via dynamic interface reduction. In SOSP ’11, pages 265–278. ACM,515

2011.516

14 Diwaker Gupta, Kashi Venkatesh Vishwanath, Marvin McNett, Amin Vahdat, Ken Yocum,517

Alex Snoeren, and Geoffrey M. Voelker. Diecast: Testing distributed systems with an accurate518

scale model. ACM Trans. Comput. Syst., 29(2):4:1–4:48, May 2011.519

15 Naohiro Hayashibara, Xavier Défago, Rami Yared, and Takuya Katayama. The phi accrual520

failure detector. In SRDS. IEEE Computer Society, 2004.521

16 Mike Hibler, Robert Ricci, Leigh Stoller, Jonathon Duerig, Shashi Guruprasad, Tim Stack,522

Kirk Webb, and Jay Lepreau. Large-scale virtualization in the emulab network testbed.523

17 Márk Jelasity, Spyros Voulgaris, Rachid Guerraoui, Anne-Marie Kermarrec, and Maarten524

Van Steen. Gossip-based peer sampling. ACM Transactions on Computer Systems (TOCS),525

25(3):8, 2007.526

18 Charles Killian, James W Anderson, Ranjit Jhala, and Amin Vahdat. Life, death, and the527

critical transition: Finding liveness bugs in systems code. In NSDI ’07, 2007.528

19 Ignacio Laguna, Dong H. Ahn, Bronis R. de Supinski, Todd Gamblin, Gregory L. Lee, Martin529

Schulz, Saurabh Bagchi, Milind Kulkarni, Bowen Zhou, Zhezhe Chen, and Feng Qin. Debugging530

high-performance computing applications at massive scales. Commun. ACM, 58(9):72–81,531

August 2015.532

20 Leslie Lamport. Time clocks, and the ordering of events in a distributed system. Commun.533

ACM, 21:558–565, July 1978.534

21 Leslie Lamport. Specifying systems: the TLA+ language and tools for hardware and software535

engineers. Addison-Wesley Longman Publishing Co., Inc., 2002.536

OPODIS 2019

http://cassandra.apache.org
http://hadoop.apache.org
https://issues.apache.org/jira/browse/CASSANDRA-6127
https://issues.apache.org/jira/browse/CASSANDRA-6127
https://issues.apache.org/jira/browse/CASSANDRA-6127
https://issues.apache.org/jira/browse/ZOOKEEPER-2212
https://issues.apache.org/jira/browse/ZOOKEEPER-2212
https://issues.apache.org/jira/browse/ZOOKEEPER-2212
https://elastest.io/resources/ElasTest_white_paper.pdf

32:16 Minha: Large-Scale Distributed Systems Testing Made Practical

22 Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F. Lukman, and Haryadi S.537

Gunawi. SAMC: Semantic-aware model checking for fast discovery of deep bugs in cloud538

systems. In OSDI ’14. USENIX Association, 2014.539

23 Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and Haryadi S. Gunawi. TaxDC:540

A taxonomy of non-deterministic concurrency bugs in datacenter distributed systems. In541

ASPLOS ’16. ACM, 2016.542

24 Tanakorn Leesatapornwongsa, Cesar A. Stuardo, Riza O. Suminto, Huan Ke, Jeffrey F.543

Lukman, and Haryadi S. Gunawi. Scalability bugs: When 100-node testing is not enough. In544

HotOS ’17, pages 24–29. ACM, 2017.545

25 Lorenzo Leonini, Étienne Rivière, and Pascal Felber. Splay: Distributed systems evaluation546

made simple (or how to turn ideas into live systems in a breeze). In NSDI, volume 9, pages547

185–198, 2009.548

26 Haopeng Liu, Guangpu Li, Jeffrey F. Lukman, Jiaxin Li, Shan Lu, Haryadi S. Gunawi, and549

Chen Tian. DCatch: Automatically detecting distributed concurrency bugs in cloud systems.550

In ASPLOS ’17. ACM, 2017.551

27 Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiaochen Lian, Jian Tang, Ming Wu,552

M. Frans Kaashoek, and Zheng Zhang. D3s: Debugging deployed distributed systems. In553

NSDI ’08. USENIX Association, 2008.554

28 B. D. Lubachevsky. Efficient distributed event-driven simulations of multiple-loop networks.555

Commun. ACM, 32(1):111–123, January 1989.556

29 Nuno Machado, Francisco Maia, Miguel Matos, and Rui Oliveira. BuzzPSS: A dependable557

and adaptive peer sampling service. In LADC ’16. IEEE Computer Society, 2016.558

30 Francisco Maia, Miguel Matos, Ricardo Vilaça, José Pereira, Rui Oliveira, and Etienne Rivière.559

Dataflasks: Epidemic store for massive scale systems. In SRDS ’14. IEEE Computer Society,560

2014.561

31 A. Montresor and M. Jelasity. Peersim: A scalable p2p simulator. In International Conference562

on Peer-to-Peer Computing, 2009.563

32 Larry Peterson and Timothy Roscoe. The design principles of planetlab. ACM SIGOPS564

operating systems review, 40(1):11–16, 2006.565

33 Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location,566

and routing for large-scale peer-to-peer systems. In Middleware ’01, London, UK, UK.567

Springer-Verlag.568

34 Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz. Runtime measurements in569

the cloud: Observing, analyzing, and reducing variance. Proc. VLDB Endow., 3(1-570

2):460–471, September 2010. URL: http://dx.doi.org/10.14778/1920841.1920902, doi:571

10.14778/1920841.1920902.572

35 Jiri Simsa, Randy Bryant, and Garth A Gibson. dbug: Systematic evaluation of distributed573

systems. In SSV ’10, 2010.574

36 Peter Urban, Xavier Défago, and André Schiper. Neko: A single environment to simulate575

and prototype distributed algorithms. In Information Networking, 2001. Proceedings. 15th576

International Conference on, pages 503–511. IEEE, 2001.577

37 Spyros Voulgaris, Daniela Gavidia, and Maarten van Steen. CYCLON: Inexpensive membership578

management for unstructured p2p overlays. Journal of Network and Systems Management,579

13(2):197–217, 2005.580

38 Yang Wang, Manos Kapritsos, Lara Schmidt, Lorenzo Alvisi, and Mike Dahlin. Exalt:581

Empowering researchers to evaluate large-scale storage systems. In NSDI’14, pages 129–141,582

Berkeley, CA, USA, 2014. USENIX Association.583

39 Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haoxiang Lin, Mao584

Yang, Fan Long, Lintao Zhang, and Lidong Zhou. MODIST: Transparent model checking of585

unmodified distributed systems. In NSDI ’09. USENIX Association, 2009.586

http://dx.doi.org/10.14778/1920841.1920902
https://doi.org/10.14778/1920841.1920902
https://doi.org/10.14778/1920841.1920902
https://doi.org/10.14778/1920841.1920902

	Introduction
	Related Work
	Minha Framework
	Achieving scale
	Achieving observability

	Use Case: Peer Sampling Service
	Test application
	Test driver
	Log analysis
	Scalability

	Use Case: Data Store
	Global Property Checking
	Performance and Resource Usage

	Conclusions and Future Work

