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Abstract
We present Symbiosis: a concurrency debugging technique based
on novel differential schedule projections (DSPs). A DSP shows
the small set of memory operations and data-flows responsible for
a failure, as well as a reordering of those elements that avoids the
failure. To build a DSP, Symbiosis first generates a full, failing,
multithreaded schedule via thread path profiling and symbolic con-
straint solving. Symbiosis selectively reorders events in the failing
schedule to produce a non-failing, alternate schedule. A DSP re-
ports the ordering and data-flow differences between the failing and
non-failing schedules. Our evaluation on buggy real-world software
and benchmarks shows that, in practical time, Symbiosis generates
DSPs that both isolate the small fraction of event orders and data-
flows responsible for the failure, and show which event reorderings
prevent failing. In our experiments, DSPs contain 81% fewer events
and 96% fewer data-flows than the full failure-inducing schedules.
Moreover, by allowing developers to focus on only a few events,
DSPs reduce the amount of time required to find a valid fix.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Diagnostics

General Terms Algorithms, Design, Reliability

Keywords Concurrency, Debugging, Symbolic Execution, Con-
straint Solving, Differential Schedule Projection

1. Introduction
Concurrent and parallel programming are the new norm and are
much more difficult than sequential programming. Shared-memory
multi-threading is especially wide-spread, and requires program-
mers to reason about multiple threads of execution that interact
by reading and writing shared variables. Operations in different
threads are unordered by default, unless ordered by synchroniza-
tion, and different executions may non-deterministically adhere to
different schedules of unordered operations that produce different
results. A key challenge is that most schedules are correct, but some
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may permit a multi-threaded sequence of shared-memory accesses
that leads to undesirable behavior, like a crash. Such a schedule
causes a failure and is the result of a concurrency bug (i.e., a mis-
take in the code that incorrectly permits a failing schedule).

Eliminating concurrency bugs is extremely difficult. Failing
schedules may manifest rarely and reproducing them is often diffi-
cult. Prior work has addressed reproducibility with a number of dif-
ferent strategies, including deterministic record and replay (R&R)
(both order-based [20, 23, 49] and search-based [35, 39, 53]) and
deterministic execution [4, 10, 37]. These techniques help produce
an execution that fails, but simply reproducing a failure may pro-
vide no insight into its cause. The key to debugging is understand-
ing a failure’s root cause, i.e., the set of event orderings that are
necessary for failure. The number of events that comprise a root
cause is typically small [6], but it is often unclear which events in a
full schedule to focus on. Any operation in any thread may have led
to the failure and blindly analyzing a full schedule is a metaphor-
ical search for a needle in a haystack. Even if the programmer
finds the root cause, they still must understand how to change the
code in such a way the problematic events do not execute in the
failure-inducing order, which is also difficult.

We present Symbiosis, a system which helps finding and un-
derstanding a failure’s root cause, as well as fixing the underlying
bug. Figure 1 presents a schematic view of our system. Symbiosis
first collects single-threaded path profiles from a concrete, failing
execution. The profiles guide a symbolic execution, yielding per-
thread symbolic event traces compatible with the failure. These are
then used to generate a Satisfiability Modulo Theory (SMT) for-
mulation, the solution to which represents a multi-threaded fail-
ing schedule. To prune irrelevant events from the failing schedule,
Symbiosis generates an unsatisfiable SMT formulation encoding
the failing schedule, but the absence of the failure. As a result, the
SMT solver reports a subset of constraints that conflict in the un-
satisfiable SMT formulation; their corresponding event orderings
are necessary for the failure, and form the pruned root cause sched-
ule. The root cause schedule is used in another SMT formulation to
compute non-failing, alternative schedules that comprise reorder-
ings of the root cause schedule’s events. Symbiosis enhances the
debugging utility of the root cause schedule by reporting only the
important ordering and data-flow differences between failing and
non-failing schedules. We call the output of our novel debugging
approach a differential schedule projection (DSP).

DSPs simplify debugging for two main reasons. First, by show-
ing only what differs between a failing and non-failing schedule,
the programmer sees only a very small number of relevant op-
erations, rather than a full schedule. Second, DSPs illustrate, not
only the failing schedule, but also the way execution should be-
have, if not to fail. Seeing the different event orders side-by-side
helps understand the failure and, often, how to fix the bug. Crit-
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ically, Symbiosis produces a DSP from a single failing schedule,
enabling its use for failures observed rarely (i.e., in production) and
does not require repeated program executions like prior work [31].
Our evaluation in Section 5 shows that DSPs have, on average, 81%
fewer events than full schedules and shows qualitatively, with case
studies, that DSPs help understand failures and fix bugs.

To summarize, our contributions are: i) An SMT constraint for-
mulation, based on the computed failing schedule, that identifies
the sub-schedule that is a failure’s root cause. ii) An SMT con-
straint formulation that systematically varies the order of root cause
events to find alternative non-failing schedules similar to the orig-
inal failing schedule. iii) A novel differential schedule projection
methodology that isolates important control and data-flow changes
between failing and non-failing schedules computed by Symbiosis.
iv) An implementation of Symbiosis for C/C++ and Java and an
evaluation, showing the debugging efficacy of Symbiosis and its
applicability to failure avoidance and failure reproduction.

2. Background
Symbiosis helps with concurrency debugging by leveraging prior
work on symbolic execution and Satisfiability Modulo Theory
(SMT) solving. This section briefly reviews these topics.
Concurrency Bugs. Concurrency bugs are errors in code that per-
mit multi-threaded schedules that lead to a failure. Concurrency
bugs have been studied extensively in the literature [13, 16, 18,
28, 31–34, 41, 51, 52]. Data-races [13, 16, 41], atomicity viola-
tions [18, 28, 32], and ordering violations [29, 30, 38, 51, 52] are
different types of concurrency bugs studied by prior work. These
bugs vary in their mechanism and result. For example, while data-
races may lead to violations of sequential consistency [27], atom-
icity violations may lead to unserializable behavior of atomic re-
gions. We defer to the literature for a detailed discussion of these
bug types and their failure modes. Instead, we just emphasize that
they share the following important characteristic: they lead to a fail-
ure when they permit operations in different threads to execute in
an order that should be forbidden. Symbiosis attacks the debugging
problem by identifying such incorrect operation orderings that con-
stitute the root cause of a failure.
Symbolic Execution. Symbolic execution [25] explores the space
of possible executions of a program by emulating or directly ex-
ecuting its statements. During symbolic execution, some variables
have concrete values (e.g., 12), and other variables, like unknown
inputs, have symbolic values. A symbolic value represents a set of
possible concrete values. Assignments to and from symbolic vari-
ables and operations involving symbolic variables produce results
that are also symbolic. When an execution reaches a branch depen-
dent on a symbolic variable, it spawns two identical copies of the
execution state – one in which the branch is taken, one in which the
branch is not taken. Spawned copies continue independently along
these different paths and the process repeats for every new sym-
bolic branch. Each path has a path constraint, encoding all branch
outcomes on that path. Thus, the path constraint determines possi-
ble concrete values for symbolic variables that lead execution down
a particular path. As we describe in Section 3.3, Symbiosis uses
symbolic execution to find a path in each thread that leads to a
failure. Like unknown inputs, Symbiosis treats shared variables as
symbolic, because they might be modified non-deterministically by
any thread during a multi-threaded execution.
SMT Solvers. A Satisfiability Modulo Theories (SMT) solver is
a tool that, given a formula over variables, finds a satisfying as-
signment of the variables or reports that it is unsatisfiable. SMT is
based on boolean satisfiability (SAT). However, SMT is more ex-
pressive than SAT, for example, handling arithmetic. SAT and SMT
are NP-complete, but decades of research have produced solvers

(e.g., Z3 [9]) that practically solve large problems. Practical SMT
has found use in many areas: hardware [12] and software verifica-
tion [40], program analysis [26], and test generation [45].

CLAP [21] and our work link concurrency, SMT, and symbolic
execution. A symbolic path constraint corresponds to an SMT for-
mula that constrains variables at each point in a sequential execu-
tion [7, 45]. Thus, a concurrent symbolic execution corresponds to
i) a combination of the SMT formulae for each thread’s symbolic
execution, and ii) additional constraints encoding inter-thread data-
flow and synchronization. CLAP’s goal was to reproduce failed ex-
ecutions, so it added constraints corresponding to a failure’s mani-
festation. Symbiosis adds these constraints as well.

When an SMT formula is unsatisfiable, some SMT solvers [9]
are able to explain why by reporting which constraints conflict in
an unsatisfiability core, or UNSAT Core. BugAssist [24] pioneered
the use of the UNSAT core to help isolate errors in sequential
programs, but Symbiosis makes novel use of this feature to debug
concurrency errors and reduce the information it must analyze
when building differential schedule projections.

3. Symbiosis
Symbiosis is a technique for concisely reporting the root cause of
a failing multi-threaded execution, alongside a set of non-failing,
alternate executions of the events that make up the root cause.
Symbiosis produces differential schedule projections, which reveal
bugs’ root causes and aid in debugging. Symbiosis has five phases,
as depicted in Figure 1:
1) Symbolic trace collection. In a concrete, failing program exe-
cution, Symbiosis traces the basic blocks executed in each thread
independently. The per-thread path profiles are used to guide sym-
bolic execution, producing a set of per-thread traces with symbolic
information (e.g. path conditions and read-write accesses to shared
variables).
2) Failing schedule generation. Symbiosis produces an SMT for-
mula that corresponds to the symbolic execution trace. The formula
includes constraints that represent each thread’s path, as well as the
failure’s manifestation, memory access orderings, and synchroniza-
tion orderings. The solution to the SMT formula corresponds to a
complete, failing, multi-threaded execution. In other words, this so-
lution specifies the ordering of events that triggers the error.
3) Root cause sub-schedule generation. Symbiosis produces an
SMT formula corresponding to the symbolic trace, but specifies
that the execution should not fail, by negating the failure condition.
Combined with the constraints representing the order of events in
the full, failing schedule, the SMT instance is unsatisfiable. The
SMT solver produces an UNSAT core that contains the constraints
representing the execution event orders that conflict with the ab-
sence of the failure. Those event orders are necessary for the failure
to occur, i.e., the failure’s root cause sub-schedule.
4) Alternate sub-schedule generation. Symbiosis examines each
pair of events from different threads in the root cause. For each pair,
Symbiosis produces a new SMT formula, identical to the one used
to find the root cause, but with constraints implying the ordering of
the events in the pair reversed. When Symbiosis finds an instance
that is satisfiable, the corresponding schedule is very similar to the
failing schedule, but does not fail. Symbiosis reports the alternate,
non-failing schedule that is identical to the failing schedule, but
with the pair of events reordered.
5) Differential schedule projections and failure avoidance.
Symbiosis produces a differential schedule projection by compar-
ing the failing schedule and the alternate, non-failing sub-schedule.
The DSP shows how the two schedules differ in the order of their
events and in their data-flow behavior. Additionally, as the re-
ordered pair from the alternate non-failing schedule eliminates an
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Figure 1: Overview of Symbiosis. Boxes at the top represent processes. Boxes at the bottom represent inputs and outputs of processes. Dashed arrows denote
an input relationship and solid arrows denote and output relationship. Boldface boxes represent the final outputs of Symbiosis.

event order necessary for the failure to occur, it can be leveraged by
a dynamic failure avoidance system [31] to prevent future failures.
3.1 A Running Example
To illustrate the main concepts of Symbiosis, we use a running ex-
ample that consists of the modified version of pfscan file scan-
ner studied in prior work [11]. A slightly simplified snippet of the
program’s code is depicted in Figure 2a. The program uses three
threads. The first thread enqueues elements into a shared queue.
The two other threads attempt to dequeue elements, if they exist. A
shared variable, named filled, records the number of elements in the
queue. The code in the get function checks that the queue is non-
empty (reading filled at line 10), decreases the count of elements in
the queue (updating filled at line 20), then dequeues the element.

The code has a concurrency bug because it does not ensure
that the check and update of filled execute atomically. The lack of
atomicity permits some unfavorable execution schedules in which
the two consumer threads both attempt to dequeue the queue’s last
element. In that problematic case, both consumers read that the
value of filled is 1, passing the test at line 10. One of the threads
proceeds to decrement filled and dequeue the element. The other
reaches the assertion at line 19, reads the value 0 for filled, and
fails, terminating the execution. Figure 2b shows the interleaving
of operations that leads to the failure in a concrete execution.

The next sections show how Symbiosis starts from a concrete
failing execution (like the one in Figure 2b), produces a focused
root cause, and reports its significant differences from alternate
non-failing schedules to aid in debugging.
3.2 Symbolic Trace Collection
Like CLAP [21], Symbiosis avoids the overhead of directly record-
ing the exact read-write linkages between shared variables that lead
to a failure. Instead, Symbiosis collects only per-thread path pro-
files from a failing, concrete execution. As in prior work [21],
Symbiosis’s path profile for a thread consists of the sequence of
executed basic blocks for that thread in the failing execution.

Symbiosis uses the per-thread path profiles to guide a symbolic
execution of each thread and to produce each thread’s separate sym-
bolic execution trace. Symbolic execution normally explores all
paths, following the path along both branch outcomes. Symbiosis,
in contrast, guides the symbolic execution to correspond to the per-
thread path profiles by considering only paths that are compatible
with the basic block sequence in the profile. As symbolic execution
proceeds, Symbiosis records information about control-flow, fail-
ure manifestation, synchronization, and shared memory accesses
in each per-thread symbolic execution trace. Together, the traces
are compatible with the original, failing, multi-threaded execution.

Each per-thread, symbolic, execution trace contains four kinds
of information. First, each trace includes a path condition that per-
mits the failure to occur. A trace’s path condition is the sequence
of control-flow decisions made during the trace’s respective execu-
tion. Second, the trace for the thread that experienced the failure
must include the event that failed (e.g., the failing assertion). Third,
the trace must record synchronization operations, noting their type
(e.g., lock, unlock, wait, notify, fork, join, etc.), and the synchro-

nization variable involved (e.g., the lock address) if applicable.
Fourth, the trace must record loads from and stores to shared mem-
ory locations. A key aspect of the shared memory access traces
is that these are symbolic: loads always read fresh symbolic val-
ues and stores may write either symbolic or concrete values. Recall
from Section 2 that a symbolic value holds the last operation that
manipulated a value. Also, a symbolic value may, itself, be an ex-
pression that refers to other symbolic or concrete values.

Note that any technique for collecting concrete path profiles and
generating symbolic traces is adequate. In our implementation of
Symbiosis that targets C/C++, we use a technique very similar to
the front-end of CLAP [21]: Symbiosis records a basic block trace
and uses KLEE to generate per-thread symbolic traces conformant
with the block sequence. Symbiosis for Java uses Soot [46] to col-
lect path profiles and JPF [48] for symbolic execution. With some
additional engineering effort, Symbiosis could also use Pex [45] for
C#, or general R&R techniques [20, 53].
Trace Collection Example. Figure 2c illustrates a symbolic trace
collection for our running example: it shows the execution path
followed by each thread for the failing schedule in Figure 2b and
the corresponding symbolic trace produced by Symbiosis. Each
path condition in the trace represents a control-flow outcome in the
original execution (e.g. filled@2.10 > 0 denotes that thread T2’s
should read a value greater than zero from filled at line 10). Thread
T2’s trace includes the assertion that leads to the failure. Each trace
includes both symbolic and concrete values in their memory access
traces, as well as synchronization operations from the execution.
Note that we slightly simplified the threads’ traces to keep the
figure uncluttered. enqueue and dequeue also access shared data
but we only show operations that manipulate filled and perform
synchronization because they are sufficient to illustrate the failure.
3.3 Failing Schedule Generation
The symbolic, per-thread traces do not explicitly encode the multi-
threaded schedule that led to the failure. Symbiosis uses the infor-
mation in the symbolic traces to construct a system of SMT con-
straints that encode information about the execution. The solution
to those SMT constraints corresponds to a multi-threaded schedule
that ends in failure and is compatible with each per-thread symbolic
trace. This section describes how the constraints are computed.

The SMT constraints refer to two kinds of unknown variables,
namely the value variables for the fresh symbolic symbols returned
by read operations and the order variables that represent the posi-
tion of each operation from each trace in the final, multi-threaded
schedule. We notate value variables as var

t.l

, meaning the value
read from variable var by thread t at line l. We notate order vari-
ables as Op

t.l

, meaning the order of instruction Op executed by
thread t at line l, where Op can be a read (R), write (W), lock (L),
unlock (U), or other synchronization operations such as wait/signal
(our notation differs slightly from that in [21] for clarity).

Figure 2d shows part of the system of SMT constraints gener-
ated by Symbiosis from the symbolic traces presented in Figure 2c.
The system, denoted �

fail

, can be decomposed into five sets of
constraints:
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1   put(elem){ 
2      filled = 0;
3      lock();
4      filled++; 
5      enqueue(elem);
6      unlock();
7   } 

08   elem get(){ 
09      lock();
10      if(filled > 0){
11          unlock(); 
12         //other code
13     }
14      else {
15          unlock(); 
16          return null;
17      }
18      lock();
19      assert(filled > 0);
20      filled--;
21      elem = dequeue();
22      unlock();
23      return elem;
24   } 

Thread T0
2  filled = 0;
3  lock();
4  filled++; //filled == 1
5  enqueue(elem);
6  unlock();

09  lock();
10  if(filled > 0){
11     unlock(); 
13     ... }

18  lock();
19  assert(filled > 0);
20  filled--; //filled == 0
21  elem = dequeue();
22  unlock();

18  lock();
19  assert(filled > 0);FAIL

Thread T1 Thread T2

09  lock();
10  if(filled > 0){
11     unlock(); 
13     ... }

a) Source Code b) Original Failing Interleaving

2  filled = 0;
3  lock();
4  filled++; 
5  enqueue(elem);
6  unlock();

09  lock();
10  if(filled > 0){
11     unlock(); 
13     ... }
18  lock();
19  assert(filled > 0);

execution path symbolic trace
Wfilled@0.2 = 0
L@0.3
Rfilled@0.4 ; Wfilled@0.4 = filled@0.4 + 1

U@0.6

execution path symbolic trace
L@2.9
Rfilled@2.10
U@2.11

L@2.18
Rfilled@2.19

Path conditions:
filled@2.10 > 0
filled@2.19 <= 0  (bug condition)

c) Symbolic Traces

Path constraints (φpath):
filled1.10 > 0 ∧ filled1.19 > 0 ∧ filled2.10 > 0 

Failure constraint (φbug):
filled2.19 ≤ 0

Synchronization constraints (φsync):
   (U0.6 < L1.9 ∧ U0.6 < L2.9 ∧ U0.6 < L1.18 ∧ U0.6 < L2.18)
∨ (L0.3 > U1.11 ∧ (L2.9 > U0.6 ∨ U2.11 < L1.9) ∧ ...)
∨ (L0.3 > U1.22 ∧ ...)
∨...

Memory Order constraints (φmo):
   (W0.2 < L0.3 < R0.4 < W0.4 < U0.6)
∧ (L1.9 < R1.10 < U1.11 < ...)
∧ (L2.9 < R2.10 < U2.11 < ...)

d) Failing Constraint Model (Φfail)

09  lock();
10  if(filled > 0){
11     unlock(); 
13     ... }
18  lock();
19  assert(filled > 0);
20  filled--;
21  elem = dequeue();
22  unlock();

execution path symbolic trace
L@1.9
Rfilled@1.10
U@1.11

L@1.18
Rfilled@1.19
Rfilled@1.20 ; Wfilled@1.20 = filled@1.20 – 1

U@1.22

Path conditions:
filled@1.10 > 0
filled@1.19 > 0

T0

T1

T2

Read-Write constraints (φrw):
(filled0.4 = 0 ∧ W0.2 < R0.4 ∧ (W1.20 < W0.2 ∨ W1.20 > R0.4))
∨ (filled0.4 = filled1.20 − 1 ∧ W1.20 < R0.4 
         ∧ (W0.2 < W1.20 ∨ W0.2 > R0.4)
         ∧ ...)
∨...

Figure 2: Running example. a) Source code. b) Concrete failing execution. c) Per-thread symbolic execution traces. d) Failing Constraint Model.

�
fail

= �
path

^ �
bug

^ �
sync

^ �
rw

^ �
mo

where �
path

encodes the control-flow path executed by each
thread, �

bug

encodes the occurrence of the failure, �
sync

encodes
possible inter-thread interactions via synchronization, �

rw

encodes
possible inter-thread interactions via shared memory, and �

mo

en-
codes possible operation reorderings permitted by the memory con-
sistency model. The following paragraphs explain how Symbiosis
derives each set of constraints from the symbolic execution traces.
Path Constraint (�

path

) The path SMT constraint encodes branch
outcomes during symbolic execution. Symbiosis gathers path con-
ditions by recording the branch outcomes along the basic block
trace from the concrete path profile. A thread’s path constraint is the
conjunction of the path conditions for the execution of the thread
in the symbolic trace. The �

path

constraint is the conjunction of all
threads’ path constraints. Each conjunct represents a single control-
flow decision by constraining the value variables for one or more
symbolic operands. In our running example, the shared variable
filled is symbolic, resulting a �

path

with three conjuncts. The three
conjuncts express that the value of filled should be greater than 0
when thread T1 executes lines 10 and 19, as well as when thread
T2 executes line 10. Figure 2d shows �

path

for our example.
Failure Constraint (�

bug

) The failure SMT constraint expresses
the failure’s necessary conditions. The constraint is an expression
over value variables for symbolic values returned by some subset
of read operations (e.g., those in the body of an assert statement).
Figure 2d shows �

bug

for the running example, representing the
sufficient condition for the assertion in thread T2 to fail.
Synchronization Constraints (�

sync

) There are two types of syn-
chronization SMT constraints: partial order constraints and lock-
ing constraints. Partial order constraints represent the partial order
of different threads’ events resulting from fork/join/wait/signal op-
erations. For instance, a constraint for fork states that the first event
of a child thread must occur after the fork operation in the parent
thread. Locking constraints represent the mutual exclusion effects
of lock and unlock operations. We define a locking constraint for
two threads, t and t0, stating that each thread executes a critical
section protected by a lock operation and an unlock operation –
namely L/U and L0/U 0. The constraint is a disjunction of SMT
expressions representing two possible cases. In the first case, t ac-
quires the lock first and U happens before L0. In the second case,
t0 acquires the lock first and U 0 happens before L. For each such

pair, the disjunction that becomes part of �
sync

is composed of two
SMT constraints, defined over order variables, representing the al-
ternation of the two cases. Figure 2d shows a subset of the locking
constraints for our running example that involve the lock/unlock
pair of thread T0 (L0:3, U0:6).
Read-Write Constraints (�

rw

) Read-write SMT constraints encode
the matching between read and write operations that leads to a
particular read operation reading the value written by a particular
write operation. Read-write constraints model the possible inter-
thread interactions via shared memory. A read-write constraint
encodes that, for every read operation r on a variable v, if r is
matched to a write w of the same variable, then the order variable
(and hence execution order) for all other writes on v are either less
than that of w or greater than that of r. The constraint also implies
that r’s value variable takes on the symbolic value written by w.
Note that read-write SMT constraints are special in that they affect
order variables and value variables.

In the running example, thread T0 reads filled at line 4. If T0
reads 0 at that point, then the most recent write to filled must be the
one at line 2. The matching of that read and write implies that the
order of the write must precede read operation (i.e. W0.2 < R0.4),
and that all the other writes to filled (e.g. W1.20) either occur before
W0.2 or after R0.4. The same reasoning is also applied for the
remaining reads of the program on symbolic variables.
Memory Order Constraints (�

mo

) The memory-order constraints
specify the order in which instructions are executed in a specific
thread. Although is possible to express different memory consis-
tency models [21], in this paper we opted not to focus on relaxed
memory ordering, instead focusing on sub-schedule generation and
differential schedule projections. Therefore, here we consider se-
quential consistency only, meaning statements in a thread execute
in program order. For the running example in Figure 2b, the mem-
ory order constraint requires that operations in thread T0 respect
the constraint W0.2 < L0.3 < R0.4 < W0.4 < U0.6.
3.4 Root Cause Sub-schedule Generation
Each order variable referred to by an SMT constraint represents the
ordering of two program events from the separate single-threaded
symbolic traces. A binding of truth values to the SMT order vari-
ables corresponds directly to an ordering of operations in the other-
wise unordered, separate, per-thread traces. Solving the constraint
system binds truth values to variables, producing a multi-threaded
schedule. The constraint system includes a constraint represent-
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a) Failing Schedule Generation

SMT Solver

φpath ∧ φsync ∧ φmo ∧ φrw ∧ φbug[filled2.19 ≤ 0]

b) Root Cause Sub-schedule Generation

SMT Solver

φpath ∧ φsync ∧ φmo ∧ φrw ∧
φfsch ∧ ¬φbug[filled2.19＞0]

Unsat Core: L1.18 < R1.19 < R1.20 < W1.20 
                   < U1.22 < L2.18 < R2.19 < (U2.20)

Reports UNSAT

d) DSP Generation

φfsch: W0.2 < L0.3  < R0.4 <  W0.4 < U0.6 < L1.9 
< R1.10 < U1.11 < L2.9 < R2.10 < U2.11 < L1.18 < R1.19 
< R1.20 < W1.20 < U1.22 < L2.18 < R2.19 < (U2.20)

c) Alternate Sub-schedule Generation

reorder pair
in φfsch to
produce φinvsch

Candidate Pairs:
(L1.18 , R2.19)
(W1.20 , R2.19)
(U1.22 , R2.19)
... φinvsch: W0.2 < L0.3  < R0.4 <  W0.4 < U0.6 < L1.9 

< R1.10 < U1.11 < L2.9 < R2.10 < U2.11 < L2.18< R2.19 
< (U2.20) < L1.18 < R1.19 < R1.20 < W1.20 < U1.22 

SMT Solver

φpath ∧ φsync ∧ φmo ∧ φrw ∧
φinvsch ∧ ¬φbug[filled2.19 > 0]

φinvsch is a valid alternate 
non-failing schedule

is SAT?

failing schedule
   ...                
                L2.9 
                R2.10 
                U2.11 
        L1.18
        R1.19 
        R1.20 
        W1.20 
        U1.22 
                L2.18 
                R2.19 
                (U2.20)

alternate schedule
 W0.4
                L2.9 
                R2.10 
                U2.11 
                L2.18 
                R2.19 
                (U2.20)        
        L1.18
        R1.19 
        R1.20 
        W1.20 
        U1.22 
                

filled == 0

filled == 1

should be atom
ic

Figure 3: Root cause and Alternate schedule generation. a) Possible failing schedule produced by the SMT solver for the constraint system in Figure 2d
((U2.20) represents a synthetic unlock event). b) Root cause sub-schedule, which corresponds to the UNSAT core produced by the solver. c) Candidate pair
reordering and respective alternate schedule. d) Differential Schedule Projection generated by Symbiosis.

ing the occurrence of the failure, so the produced multi-threaded
schedule manifests the failure (�

bug

). Solving the generated SMT
formulae, Symbiosis produces a full, failing, multi-threaded sched-
ule �

fsch

. The entire multi-threaded schedule may be long, com-
plex, and may contain information that is irrelevant to the root
cause of the failure. Symbiosis uses a special SMT formulation to
produce a root cause sub-schedule that prunes some operations in
the full schedule, but preserves event orderings that are necessary
for the failure to occur. To compute the root cause sub-schedule,
Symbiosis generates a new constraint system, denoted �

root

, that
is designed to be unsatisfiable in a way that reveals the necessary
orderings. Symbiosis leverages the ability of the SMT solver to pro-
duce an explanation, of why a formula was unsatisfiable, to report
only those necessary orderings.

To build the root cause sub-schedule SMT formula, Symbiosis
logically inverts the failure constraint, effectively requiring the
failure not to occur (i.e. ¬�

bug

). Symbiosis adds constraints to the
formula that directly encode the event orders in �

fsch

(i.e. the full,
failing schedule that was previously computed). The complete root
cause sub-schedule formula is then written as follows:

�
root

= �
path

^ ¬�
bug

^ �
sync

^ �
rw

^ �
mo

^ �
fsch

The original SMT formula that Symbiosis used to find the full
failing schedule considers all possible multi-threaded schedules
that are consistent with the symbolic, per-thread schedules. In con-
trast, the root cause sub-schedule SMT formula adds the failing
schedule �

fsch

constraint, accommodating only the full, failing
schedule. Combining the inverted failure constraint and the order-
ing constraints for the full, failing schedule make an unsatisfiable
constraint formula: the inverted failure constraint requires the fail-
ure not to occur and the failing schedule’s ordering constraints re-
quire the failure to occur.

When an SMT solver, like Z3, attempts to solve the unsatisfiable
formula, it produces an unsatisfiable (UNSAT) core which is a sub-
set of constraint clauses that conflict, leaving the formula unsatisfi-
able. The UNSAT core for �

root

encodes the subset of clauses that
conflict because the �

fsch

requires the failure to occur and ¬�
bug

requires the failure not to occur. The event orderings that corre-
spond to those conflicted constraints are the ones in �

fsch

that im-
ply �

bug

. Those orderings are a necessary condition for the failure;
their corresponding constraints, together with ¬�

bug

are respon-
sible for the unsatisfiability of �

root

. Reporting the sub-schedule
corresponding to the UNSAT core yields fewer total events than are
in the full, failing schedule, yet includes event orderings necessary
for the failure.

Figure 3a shows a possible failing schedule produced by the
constraint system corresponding to the execution depicted in Fig-
ure 2d. The failure constraint �

bug

requires the corresponding ex-
ecution to manifest the failure. The generated path and memory
access constraints are compatible with the failure and the system
is satisfiable, producing the failing execution trace shown (�

fsch

).
Note that Symbiosis inserts a synthetic unlock event (U2.20) in the
model, in order to preserve the correct semantics of synchroniza-
tion constraints (see § 4).

In Figure 3b, the failure constraint is negated, requiring the cor-
responding execution not to manifest the failure (i.e., filled2.19 > 0
and the assertion at line 19 does not fail). The UNSAT core shows
why �

root

is unsatisfiable: the negated failure constraint conflicts
with the subset of ordering constraints from �

fsch

that cause filled
to be less than 0 when thread 2 executes line 19 (note that R2.19

defines the value of filled2.19 read by the assertion).
In our experience, the UNSAT core produced by Z3 is typically

not minimal. As a result, while helpful, an UNSAT core alone is not
sufficient for debugging and necessitates a Differential Schedule
Projection to isolate a bug’s root cause.
3.5 Alternate Sub-schedule Generation
In addition to reporting the bug’s root cause, Symbiosis also pro-
duces alternate, non-failing sub-schedules. These alternate sub-
schedules are non-failing variants of the root cause sub-schedule,
with the order of a single pair of events reversed. Alternate sub-
schedules are the key to building differential schedule projections
(§ 3.6). Symbiosis generates alternate, non-failing sub-schedules
after it identifies the root cause. To generate an alternate sub-
schedule, Symbiosis selects a pair of events from different threads
that were included in the bug’s root cause. Symbiosis then gen-
erates a new constraint model, like the one used to identify the
root cause. We call this model �

alt

. The �
alt

model includes
the inverted failure constraint. The model also includes a set of
constraints, denoted �

invsch

, that encode the original full, failing
schedule, except the constraint representing the order of the se-
lected pair of events is inverted. Inverting the order constraint for
the pair of events yields the following new constraint model.

�
alt

= �
path

^ ¬�
bug

^ �
sync

^ �
rw

^ �
mo

^ �
invsch

The new �
alt

model corresponds to a different, full execution
schedule in which the events in the pair occur in the order opposite
to that in the full, failing schedule. If this new model is satisfiable,
then reordering the pair of events in the full, failing schedule pro-
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duces a new alternate schedule in which the failure does not mani-
fest, as shown in Figure 3c.

If there are many event pairs in the root cause, then Symbiosis
must generate and attempt to solve many constraint formulae.
Symbiosis systematically evaluates a set of candidate pairs in a
fixed order, choosing the pair separated by the fewest events in the
original schedule first. The reasoning behind this design choice is
that events in a pair that are further apart are less likely to be mean-
ingfully related and, thus, less likely to change the failure behavior
when their order is inverted. By default, we configured Symbiosis
to stop after finding a single alternate, non-failing schedule. How-
ever, the programmer can instruct Symbiosis to continue generating
alternate schedules, given that studying sets of schedules may re-
veal useful invariants [34].

Arbitrary operation reorderings may yield infeasible schedules.
Reordering may change inter-thread data flow, producing values
that are inconsistent with a prior branch dependent on those values.
The inconsistency between the data and the execution path makes
the execution infeasible. Symbiosis produces only feasible sched-
ules by including path constraints in its SMT model. If a reordering
leads to inconsistency, the SMT path constraints become unsatisfi-
able and Symbiosis produces no schedule.
3.6 Differential Schedule Projection
Differential schedule projection (DSP) is a novel debugging method-
ology that uses root cause sub-schedules and non-failing alternate
sub-schedules. The key idea behind debugging with a DSP is to
show the programmer the salient differences between failing, root
cause schedules and non-failing, alternate schedules. Examining
those differences helps the programmer understand how to fix the
bug, rather than helping them understand the failure only, like tech-
niques that solely report failing schedules.

Concretely, a DSP consists of a pair of sub-schedules deco-
rated with several pieces of additional information. The first sub-
schedule is the root cause sub-schedule, which is the source of the
projection. The second sub-schedule is an excerpt from the alter-
nate, non-failing schedule, which is the target of the projection.

The order of memory operations differs between the schedules
and, as a result, the outcome of some memory operations may
differ. A read may observe a different write’s result in one schedule
than it observed in another, or two writes may update memory in a
different order in one schedule than in another, leaving memory in
a different final state. These differences are precisely the changes
in data-flow that contribute to the failure’s occurrence. Symbiosis
highlights the differences by reporting data-flow variations: data-
flow between operations in the source sub-schedule that do not
occur in the target sub-schedule and vice versa.

To simplify its output, Symbiosis reports only a subset of oper-
ations in the source and target sub-schedules. An operation is in-
cluded if it makes up a data-flow variation or if it is one of a pair
of operations that occur in a different order in one sub-schedule
than in the other. Alternate, non-failing schedules vary in the or-
der of a single pair of operations, so all operations that precede
both operations in the pair occur in the same order in the source
and target sub-schedules. Symbiosis does not report operations in
the common prefix, unless they are involved in a data-flow varia-
tion. By selectively including only operations related to data-flow
and ordering differences, a DSP focuses programmer attention on
the changes to a failing execution that lead to a non-failing exe-
cution. Understanding those changes are the key to changing the
program’s code to fix the bug. For instance, the DSP in Figure 3d
shows that the data-flow W1.20 ! R2.19 (in �

fsch

) changes to
W0.4 ! R2.19 (in �

invsch

). This data-flow variation is the actual
bug’s root cause. In addition, note that, by reordering the events,
the DSP also suggests that the block of operations L2.9–(U2.20)
should execute atomically, which indeed fixes the bug.

4. Implementation
4.1 Instrumenting Compiler and Runtime
Our Symbiosis prototype implements trace collection for both
C/C++ and Java programs. C/C++ programs are instrumented
via an LLVM function pass. Java programs are instrumented us-
ing Soot [46], which injects path logging calls into the program’s
bytecode. Like CLAP, we assign every basic block with a static
identifier and, at the beginning of each block, we insert a call
to a function that updates the executing thread’s path. The func-
tion logs each block as the tuple (thread Id, basic block Id)
whenever the block executes. The path logging function is im-
plemented in a custom library that we link into the program.
Although our prototype is fully functional, it has not been fully
optimized yet. For instance, lightweight software approaches
(e.g., Ball-Larus [2]) or a hardware accelerated approaches (e.g.,
Vaswani et al [47]) could also be used to improve the efficiency
of path logging. The Symbiosis prototype is publicly available at
https://github.com/nunomachado/symbiosis.
4.2 Symbolic Execution and Constraint Generation
Symbiosis’ guided symbolic execution for C/C++ programs has
been implemented on top of KLEE [7]. Since KLEE does not sup-
port multithreaded executions, similarly to CLAP, we fork a new
instance of KLEE’s execution to handle each new thread created.
We also disabled the part of KLEE that solves path conditions to
produce test inputs because Symbiosis does not use them. For Java
programs, we have used Java PathFinder (JPF) [48]. In this case,
we have disabled the handlers for join and wait operations to allow
threads to proceed their symbolic execution independently, regard-
less of the interleaving. Otherwise, we would have to explore differ-
ent possible thread interleavings when accessing these operations,
in order to find one conforming with the original execution.

Additionally, we made the following changes to both symbolic
execution engines. First, we ignore states that do not conform with
the threads’ path profiles traced at runtime, guiding the symbolic
execution along the original paths only. Second, we generate and
output a per-thread symbolic trace containing read/write accesses to
shared variables, synchronization operations, and path conditions
observed across each execution path.
Consistent Thread Identification. Symbiosis must ensure that
threads are consistently named between the original failing exe-
cution and the symbolic executions. We use a technique previously
used in jRapture [44] that relies on the observation that each thread
spawns its children threads in the same order, regardless of the
global order among all threads. Symbiosis instruments thread cre-
ation points, replacing the original PThreads/Java thread identifiers
with new identifiers based on the parent-children order relation-
ship. For instance, if a thread t

i

forks its jth child thread, the child
thread’s identifier will be t

i:j .
Marking Shared Variables As Symbolic. Precisely identifying ac-
cesses to shared data, in order to mark shared variables as sym-
bolic, is a difficult program analysis problem. Although it is pos-
sible to conservatively mark all variables as symbolic, varying
the number of symbolic variables varies the size and complex-
ity of the constraint system. For C/C++ programs we manually
marked shared variables as symbolic, like prior work [21]. We also
marked variables symbolic if their values were the result of calls
to external libraries not supported by KLEE. For Java programs,
we use Soot’s thread-local objects (TLO) static escape analysis
strategy [19], which soundly over-approximates the set of shared
variables in a program (i.e., some non-shared variables might be
marked shared). At instrumentation time, Symbiosis logs the code
point of each shared variable access. During the symbolic execu-
tion, whenever JPF attempts to read or write a variable, it consults
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Table 1: Benchmarks and performance. Column 2 shows lines of code;
Column 3, the number of threads; Column 4, the number of shared program
variables; Column 5, the number of accesses to shared variables; Column
6, the overhead of path profiling; Column 7, the size of the profile in bytes;
Column 8, the symbolic execution time; Column 9, the number of SMT
constraints; Column 10, the number of unknown SMT variables; Column
11, the time in seconds to solve the SMT system.

App. LOC # #Shrd. #Shrd. Prof. Log Symb. #SMT #SMT SMT
Thd. Var. Acc. Ovhd. Size Time Const. Var. Time

C
/C

++

crasher 70 6 4 266 25.4% 458B 0.02s 22295 400 1m2s
sbuff 151 2 5 69 16.7% 632B 0.05s 423 102 1s

pfscan 830 5 9 74 6.6% 3.8K 1.87s 678 131 1s
pbz (S)

1942 9 14
176 2.5% 1.7K 11.16s 1361 289 1s

pbz (M) 367 1.3% 2.6K 36.17s 6771 564 26s
pbz (L) 1156 2.5% 9.4K 7m11s 514548 2866 15h15m

Ja
va

airline 108 8 2 36 22% 262B 1.30s 2670 84 1s
bank 125 3 3 115 12.4% 788B 1.56s 8 250 197 2s

2stage 123 4 4 49 14.8% 196B 2.53s 264 88 1s
c4j (S)

2344 4 7
28 7.3% 366B 1.64s 122 51 1s

c4j (M) 1247 8.6% 17K 4.56s 303626 1810 51s
c4j (L) 1411 9.3% 24K 4.76s 1142120 2051 1h25m

the log to check whether that variable is shared or not. If so, JPF
treats the variable as symbolic.
Locks Held at Failure Points. If a thread holds a lock when it
fails, a reordering of operations in the critical region protected by
the lock may lead to a deadlocking schedule. Other threads will
wait indefinitely attempting to acquire the failing thread’s held lock
because the failing thread’s execution trace includes no release. We
skirt this problem by adding a synthetic lock release for each lock
held by the failing thread at the failure point. The synthetic releases
allow the failing thread’s code to be reordered without deadlocks.
4.3 Schedule Generation and DSPs
We implemented failing and non-failing, alternate schedule gener-
ation, as well as differential schedule projections from scratch in
around 4000 lines of C++ code. After building its SMT formula,
Symbiosis solves it using Z3 [9]. Symbiosis then parses Z3’s out-
put to obtain the solution of the model, or the UNSAT core, when
generating the root cause sub-schedule. Finally, to pretty-print its
output, Symbiosis generates graphical output showing the differ-
ences between the failing and the alternate schedules.

5. Evaluation
We evaluated Symbiosis with three main goals. First, we show
that Symbiosis efficiently collects path profiles and symbolic path
traces. Second, we show that Symbiosis formulates and solves its
SMT formulae in a practical, useful amount of time. Third, we
show how differential schedule projections help to understand the
failure behavior and points to the code requiring a bug fix. We
substantiate our results with characterization data and several case
studies, using buggy, multithreaded C/C++ and Java applications,
including both real-world and benchmark programs. We used four
C/C++ test cases: crasher, a toy program with an atomicity vi-
olation; stringbuffer, a C++ implementation of a bug in the Java
JDK1.4 StringBuffer library, developed in prior work [17]; pfs-
can, a real-world parallel file scanner adapted for research by [11];
and pbzip2, a real-world, parallel bzip2 compressor. We used four
Java programs: cache4j, a real-world Java object cache, driven ex-
ternally by concurrent update requests; and three tests from the
IBM ConTest benchmarks [14]: airline, bank, and 2stage. Columns
1-4 of Table 1 describe the test cases.

We evaluated the scalability of Symbiosis for pbzip2 and
cache4j by varying the size of their workload. For pbzip2, we
compressed input files of different sizes: 80KB (small), 2.6MB
(medium), and 16MB (large). For cache4j, we re-ran its test driver,
for update loop iteration counts of 1 (small), 5 (medium), and 10

Table 2: Differential schedule projections. Column 2 is the number of
event pairs reordered to find a satisfiable alternate schedule (#Alt Pairs).
Column 3 shows the number of events in the failing schedule (#Evts FS)
and Column 4 shows the number of events in the corresponding differential
schedule projection (#Evts DSP). Column 5 shows the number of data-
flow edges in the failing schedule (#D-F in FS) and Column 6 shows the
number of data-flow variations in the differential schedule projection (#D-
F in DSP). Columns 4 and 6 show the percent change compared to the full
schedule. Column 7 shows the number of operations involved in the data-
flow variations (#Ops to Grok). Columns 8-9 show whether the differential
schedule projection explains the failure, and whether it directly points to a
fix of the underlying bug in the code.

App. #Alt. #Evts #Evts # D-F # D-F in Ops to Explan Finds
Pairs FS DSP (�%) in FS DSP (�%) Grok atory? Fix?

crasher 27 287 8 (#97) 107 1 (#99) 3 Y Y
sbuff 9 73 16 (#78) 28 1 (#96) 3 Y Y

pfscan 5 93 21 (#77) 32 1 (#96) 3 Y Y
pbz (S) 1 206 20 (#90) 29 1 (#96) 3

Y Npbz (M) 1 397 36 (#91) 82 1 (#98) 3
pbz (L) 2 1223 168 (#86) 264 2 (#>99) 6
airline 1 58 7 (#88) 25 1 (#92) 3 Y Y

bank 181 124 56 (#55) 72 2 (#97) 6 Y Y
2stage 14 60 12 (#80) 27 1 (#96) 3 Y Y
c4j (S) 1 39 28 (#28) 11 2 (#82) 6

Y Nc4j (M) 1 1257 11 (#>99) 552 1 (#>99) 3
c4j (L) 1 1422 5 (#>99) 628 1 (#>99) 3

(large). In some cases, we inserted calls to the sleep function,
changing event timing and increasing the failure rate. Our work
is not targeting the orthogonal failure reproduction problem [21],
so this change does not taint our results. We ran our C/C++ ex-
periments on an 8-core, 3.5Ghz machine with 32GB of memory,
running Ubuntu 10.04.4. For Java we used a dual-core i5, 2.8Ghz
CPU with 8GB of memory, running OS X.
5.1 Trace Collection Efficiency
We measured the time and storage overhead of path profiling rela-
tive to native execution and the time cost of symbolic trace collec-
tion. Columns 6-10 of Table 1 report the results, averaged over five
trials. Symbiosis imposes a tolerable path profiling overhead, rang-
ing from 1.3% in pbzip2 (medium) to 25.4% in crasher. Curiously,
the runtime slowdown is smaller for real-world applications (pfs-
can, pbzip2, and cache4j) than for benchmarks. The reason is that
the latter programs have more basic blocks with very few opera-
tions, making block instrumentation frequent. The space overhead
of path profiling is also low, ranging from 196B (2stage) to 24K
(cache4j). CLAP [21] showed that recording threads’ path profiles
only reduces storage overheads considerably (up to 97%!) com-
pared to R&R (e.g. LEAP [20]). Symbiosis enjoys this reduction as
well. Symbiosis collects symbolic traces in just seconds for most
test cases. The only exception is pbzip2 (large), which took KLEE
around seven minutes. JPF quickly produced the symbolic traces
for all programs.
5.2 Constraint System Efficiency
The last three columns of Table 1 describe the SMT formulae
Symbiosis built for each test case. The Table also reports the
amount of time Symbiosis takes to solve its SMT constraints with
Z3, yielding a failing schedule. The data show that solver time is
very low (i.e., seconds) in most cases. Solver time often grows
with constraint count, but not always. cache4j (large) has more
than double the constraints of pbzip2 (large), but was around 11
times faster. Figure 4 helps explain the discrepancy by showing the
composition of the SMT formulations by constraint type. pbzip2
has many locking and read-write constraints, while cache4j has
no locking, although many read-write constraints. The solution
to locking constraints determines the execution’s lock order, con-
straining the solution to read-write constraints. The formulation’s
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Figure 4: Breakdown of the SMT constraint types.

complexity grows not only with the count, but mainly with the
interaction of these constraint types.

Symbiosis’s SMT solving times are practical for debugging use.
To produce a DSP, Symbiosis requires only a trace from a single,
failing execution and does not require any changes to the code or
input. Our experiments are realistic because a programmer, when
debugging, often has a bug report with a small test case that yields
a short, simple execution. The data suggest that Symbiosis han-
dles such executions very quickly (e.g., pbzip2 (small), cache4j
(medium) ). Debugging is a relatively rare development task, unlike
compilation, which happens frequently. Giving Symbiosis minutes
or hours to help solve hard bugs (like pbzip2 (large)) is reason-
able. Additionally, Symbiosis could use parallel SMT solving, like
CLAP or incorporate lock ordering information, like [5], to de-
crease solver time.
5.3 Differential Schedule Projection Efficacy
Symbiosis produces a Graphviz visualization of its differential
schedule projections (DSPs) as a graph with specific identifying
information on nodes and edges that reflects source code lines and
variables. This information includes both schedule variations and
data-flow variations as well.

To assess the efficacy of DSPs, we first measured the number of
program events and data-flow edges in the full, failing execution
that Symbiosis computes. We then compared that measurement
to the number of events and data-flow edges in the differential
schedule projection.

Table 2 summarizes our results. The most important result is
that Symbiosis’s differential schedule projections are simpler and
clearer than looking at full, failing schedules. Symbiosis reports
a small fraction of the full schedule’s data-flows and program
events in its output – on average, 80.8% fewer events and 96.2%
fewer data-flows. By highlighting only the operations involved in
the data-flow variations, Symbiosis focuses the programmer on
just a few events (3 to 6 in our tests). Furthermore, all events
Symbiosis reports are part of data-flow or event orders that dictate
the presence or absence of the failure. DSPs depict those events
only, simplifying debugging.

Symbiosis finds an alternate, non-failing schedule after reorder-
ing few event pairs – just 1 in many cases (e.g., cache4j, pbzip2).
Symbiosis reorders one pair at a time, starting from those closer in
the schedule to failure, and the data show that this usually works
well. bank is an outlier – Symbiosis reordered 181 different pairs
before finding an alternate, non-failing schedule. The bug in this
case is an atomicity violation that breaks a program invariant that
is not checked until later in the execution. As a result, Symbiosis
must search many pairs, starting from the failure point, to eventu-
ally reorder the operations that cause the atomicity violation.

Note that, even if a failure occurs only in the presence of a
particular chain of event orderings, it suffices to reorder any pair

Failing Schedule Alternate Schedule

FAIL

sb.count = newCount;
len = sb.count;

T1 T2

sb.count -= eraseCount

assert(len <= sb.count)
...

...
sb.count = newCount;

len = sb.count;

T1 T2

sb.count -= eraseCount;

assert(len <= sb.count)
...

...

a) stringbuffer

OK

fifo = NULL
if(allDone == 1) {

assert(fifo!=NULL)  
unlock(fifo->mut) fifo = NULL

if(allDone == 1) {

assert(fifo!=NULL)  
unlock(fifo->mut)

fifo = queueInit(...)
T1 T2 T1 T2

FAIL ...
OK

b) pbzip2

......

T1 T2 T1 T2

accounts[id] += sum;
tmp1 = BankTotal;
BankTotal = tmp1 + sum;

assert(accountsTotal == BankTotal);

accounts[id] += sum;
tmp2 = BankTotal;

BankTotal = tmp2 + sum;
...

FAIL

accounts[id] += sum;
tmp1 = BankTotal;
BankTotal = tmp1 + sum;

assert(accountsTotal == BankTotal)

accounts[id] += sum;
tmp2 = BankTotal;
BankTotal = tmp2 + sum;

OK

c) bank

...

T1 T2 T1 T2

inTryBlock = true

inTryBlock = false
_sleep = false

...

assert(inTryBlock==true)
...

FAIL

inTryBlock = true

inTryBlock = false
_sleep = false

assert(inTryBlock==true)
...

OK...

d) cache4j

_sleep = true
if(_sleep){

_sleep = true
if(_sleep){

fifo = queueInit(...)
...

Figure 5: Summary of Symbiosis’ output for some of the test cases.
Arrows depict data-flows and dashed boxes depict regions that Symbiosis
suggests to be executed atomically.

in the chain to prevent that failure. This phenomenon is called the
Avoidance-Testing Duality, and is detailed in previous work [31].

We now use some case studies to illustrate how differential
schedule projections focus on relevant operations and help under-
stand each failure.
stringbuffer is an atomicity violation first studied in [17] and its
DSP is depicted in Figure 5. T1 reads the length of the string buffer,
sb, while T2 modifies it. When T2 erases characters, the value T1
read becomes stale and T1’s assertion fails . The DSP shows that the
cause of the failure is T2’s second write, interleaving T1’s accesses
to sb.count. Moreover, Symbiosis’ alternate schedule suggests that,
for T1, the write on value len and the verification of the assertion
should execute atomically in order to avoid the failure. For this
case, this is actually a valid bug fix.
pbzip2 is an order violation studied in [22]. Figure 5b shows
Symbiosis’s DSP that illustrates the failure’s cause. T1, the pro-
ducer thread, communicates with T2 the consumer thread via the
shared queue, fifo. If T1 sets the fifo pointer to null while the con-
sumer thread is still using it, T2’s assertion fails. The alternate
schedule in Figure 5b, explains the failure because reordering the
assignment of null to fifo after the assertion prevents the failure.
The DSP is, thus, useful for understanding the failure. However,
to fix the code, the programmer must order the assertion with the
null assignment using a join statement. The DSP does not provide
this suggestion, so, despite helping explain the failure, it does not
completely reveal how to fix the bug.
bank is a benchmark in which multiple threads update a shared
bank balance. It has an atomicity violation that leads to a lost
update. Figure 5c shows the DSP for the failure: T1 and T2 read the
same initial value of BankTotal and subsequently write the same
updated value, rather than either seeing the result of the other’s
update. The final assertion fails, because accountsTotal, the sum of
per-account balances, is not equal to BankTotal. The Figure shows
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that Symbiosis’s DSP correctly explains the failure and shows that
eliminating the interleaving of updates to BankTotal prevents the
failure. It is noteworthy that in this example the atomicity violation
is not fail-stop and happens in the middle of the trace. Scanning
the trace to uncover the root cause would be difficult, but the DSP
pinpoints the failure’s cause precisely.
cache4j has a data-race that leads to an uncaught exception when
one thread is in a try block and another interrupts it with the library
interrupt() function [42]. JPF doesn’t support exception replay,
so we slightly modified its code, preserving the original behavior,
by replacing the exception with an assertion about a shared vari-
able. Figure 5d shows that in our version of the code, inTryBlock
indicates whether a thread is inside a try-catch block or not, the
assertion inTryBlock == true replaces the interrupt() call.
The program fails when T1 is interrupted outside a try block as
in the original code. The schedule variations reported in the DSP
explain the cause of failure – if the entry to the try block (i.e.,
inTryBlock = true) precedes the assertion, execution succeeds;
if not, the assertion fails. The involvement of exceptions makes the
fix for this bug somewhat more complicated than simply adding
atomicity, but the understanding that the DSP provides points to
the right part of the code and illustrates the correct behavior.

6. Related Work
The work that is most closely related to ours is CLAP [21],
a technique for reproducing concurrency failures, via symbolic
constraints. Symbiosis builds on the following CLAP features:
independent track of thread control flow, use of guided sym-
bolic execution, and resorting to SMT constraints. Like CLAP,
Symbiosis can also reproduce bugs (§ 3.4). Finally, Symbiosis’s
C/C++ implementation uses KLEE, as well. Despite these simi-
larities, Symbiosis differs fundamentally from CLAP in its pur-
pose and mechanisms. Unlike CLAP, Symbiosis produces precise
root cause sub-schedules and alternate, non-failing sub-schedules.
Symbiosis’s sub-schedule reports include many fewer operations
than full schedules and do not require examining the whole sched-
ule to find the few operations involved in the failure, as is the case
with CLAP. Symbiosis’s sub-schedule reports are the foundation
of differential schedule projections, a new debugging technique not
explored by CLAP. Symbiosis’s mechanism for computing sub-
schedules based on the SMT solver’s UNSAT core is novel, as is
Symbiosis’s technique for reordering event pairs to compute alter-
nate, non-failing sub-schedules. Note that CLAP does not compute
alternate, non-failing schedules. Unlike CLAP, we do not limit the
context switch count, because Symbiosis precisely isolates the root
cause, regardless of the number of context switches in the entire ex-
ecution. Finally, Symbiosis is more broadly applicable than CLAP
and we have demonstrated prototypes for Java and C/C++.

Record and Replay (R&R) techniques are also relevant to our
work. These techniques fall into three categories: i) Order-based
techniques record the order of certain events during an execution
and then replay them in the same order [20, 23, 49]. ii) Search-
based techniques only trace partial information at runtime (e.g.
record solely the order of write operations [53]) and, then, search
the space of executions for one that conforms with the observed
events [1, 39, 50]; iii) Execution-based techniques restrict all ex-
ecutions of a program so that, for a given input, the program’s
behavior is constrained to be deterministic from one run to the
next [3, 4, 10, 37]. Symbiosis is mostly orthogonal to the tech-
niques above, but shares some important characteristics. Like R&R
techniques, given a concrete trace, Symbiosis can produce a fail-
ing schedule that conforms to those events, reproducing the failure.
Symbiosis’s precise differential schedule projections and broader
applicability to debugging and failure avoidance make it novel in
contrast to R&R techniques. Unlike deterministic execution sys-

tems, Symbiosis does not aim to perturb production runs, obviating
the risk in doing so.

Techniques such as interleaving pattern-matching or sub-
schedule search also bear similarity to Symbiosis. In particular,
they aim to identify the root cause of a concurrency bug to show
the programmer how to fix it, or to avoid it in future executions. In-
terleaving pattern-matching [28, 33, 38] techniques search an exe-
cution, dynamically or by reviewing a log, for problematic patterns
of memory accesses. Although often effective, these solutions have
the drawback of missing bugs that not fit the known patterns. Unlike
these techniques, Symbiosis is not limited to searching for known
patterns. Sub-schedule search, in turn, is general and not limited
to specific patterns [31, 43, 52]. Unfortunately, the space of all of
an execution’s possible sub-schedules can be large. For some prior
techniques, considering different sub-schedules requires multiple
additional program executions, combined with statistical analysis
to make search feasible. Symbiosis requires only a single, failing
execution, does not rely on statistical reasoning, and produces pre-
cise results. Mechanically, these techniques differ in that none uses
SMT to search and none produces a differential view of its result,
like DSPs.

Finally, other techniques systematically explore the space of
possible program executions to generate test cases. Java Path
Finder [48], KLEE [7], Pex [45], and Mimic [54] use symbolic pro-
gram execution to search for an input that induces a failing path
constraint. Chess [36], PCT [6], and Concurrit [11] run a program
for a particular input and rely on an augmented scheduler to push
the execution to a potential failure. On the other hand, con2colic
testing [15] employs concolic execution and uses heuristics to ex-
plore the space of possible thread interleavings and generate tests
for multiple execution paths.

These techniques reveal only full, failing executions or buggy
inputs, and do not provide root cause information, nor differential
schedule projections. In turn, [8] also shares our goal of narrow-
ing down the difference between successful and failing schedules
to pinpoint a bug. This technique relies on random jitter and re-
quires re-executing the program, whereas Symbiosis only operates
on SMT formulations, which are sound and complete and, thus,
provide a formal guarantee that alternate schedules are non-failing.

7. Conclusions & Future Work
This paper described Symbiosis, a new technique that gets to
the bottom of concurrency bugs. Symbiosis reports focused sub-
schedules, eliminating the need for a programmer or automated de-
bugging tool to search through an entire execution for the bug’s root
cause. Symbiosis also reports novel alternate, non-failing sched-
ules, which help illustrate why the root cause is the root cause and
how to avoid failures. Our novel differential schedule projection ap-
proach links the root cause and alternate sub-schedules to data-flow
information, giving the programmer deeper insight into the bug’s
cause than path information alone. An essential part of Symbiosis’s
mechanism is the use of an SMT solver and, in particular, its ability
to report the part of a formula that makes it unsatisfiable. Symbiosis
carefully constructs a deliberately unsatisfiable formula so that the
conflicting part of that formula is the bug’s root cause. We built
two Symbiosis prototypes, one for C/C++ and one for Java. We
used them to show that for a variety of real-world and benchmark
programs from the debugging literature that Symbiosis isolates
bugs’ root causes and providing differential schedule projections
that show how to fix those root causes.
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