
14

Concurrency Debugging with Differential Schedule Projections

NUNO MACHADO, INESC-ID, Instituto Superior Técnico, Universidade de Lisboa
DANIEL QUINTA, INESC-ID
BRANDON LUCIA, Carnegie Mellon University
LUÍS RODRIGUES, INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

We present Symbiosis: a concurrency debugging technique based on novel differential schedule projections
(DSPs). A DSP shows the small set of memory operations and dataflows responsible for a failure, as well as a
reordering of those elements that avoids the failure. To build a DSP, Symbiosis first generates a full, failing,
multithreaded schedule via thread path profiling and symbolic constraint solving. Symbiosis selectively
reorders events in the failing schedule to produce a nonfailing, alternate schedule. A DSP reports the ordering
and dataflow differences between the failing and nonfailing schedules. Our evaluation on buggy real-world
software and benchmarks shows that, in practical time, Symbiosis generates DSPs that both isolate the
small fraction of event orders and dataflows responsible for the failure and report which event reorderings
prevent failing. In our experiments, DSPs contain 90% fewer events and 96% fewer dataflows than the full
failure-inducing schedules. We also conducted a user study that shows that, by allowing developers to focus
on only a few events, DSPs reduce the amount of time required to understand the bug’s root cause and find
a valid fix.

CCS Concepts: � Software and its engineering → Software testing and debugging;

Additional Key Words and Phrases: Concurrency, bug localization, constraint solving, differential schedule
projection

ACM Reference Format:
Nuno Machado, Daniel Quinta, Brandon Lucia, and Luı́s Rodrigues. 2016. Concurrency debugging with
differential schedule projections. ACM Trans. Softw. Eng. Methodol. 25, 2, Article 14 (April 2016), 37 pages.
DOI: http://dx.doi.org/10.1145/2885495

1. INTRODUCTION

Concurrent programming is the new norm, because it allows exploring the parallelism
offered by recent multicore architectures. Unfortunately, concurrent and parallel pro-
gramming are much more difficult than sequential programming. To exploit concur-
rency in multithreaded code, programmers need to reason about multiple threads
of execution that interact by reading from and writing to shared memory locations.
However, without proper synchronization, operations in different threads may non-
deterministically adhere to different execution schedules and, consequently, produce
different results. Although most schedules are correct, some failing schedules can lead

This work was partially supported by national funds through Fundação para a Ciência e a Tecnologia (FCT),
under project UID/CEC/50021/2013, and by a 2015 Google Faculty Research Award.
Authors’ addresses: N. Machado and D. Quinta, INESC-ID, Office 612, Rua Alves Redol 9, 1000-029 Lisboa,
Portugal; emails: nuno.machado@tecnico.ulisboa.pt, danielribeiro.mail@gmail.com; B. Lucia, CIC 4th Floor,
101A, Robert Mehrabian Collaborative Innovation Center (CIC), Carnegie Mellon University, 4720 Forbes
Avenue, Pittsburgh, PA 15213; email: blucia@cmu.edu; L. Rodrigues, INESC-ID, Office 508, Rua Alves Redol
9, 1000-029 Lisboa, Portugal; email: ler@tecnico.ulisboa.pt.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1049-331X/2016/04-ART14 $15.00
DOI: http://dx.doi.org/10.1145/2885495

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

http://dx.doi.org/10.1145/2885495
http://dx.doi.org/10.1145/2885495

14:2 N. Machado et al.

to undesirable behavior, like a crash or data corruption. A failing schedule is the result
of a concurrency bug, which a mistake in the code that incorrectly permits an ordering
of thread operations that leads to a failure.

Eliminating concurrency bugs is extremely difficult. Failing schedules may manifest
rarely and reproducing them is often difficult. Prior work has addressed reproducibility
with a number of different strategies, including record and replay (R&R) (both order
based (Huang et al. [2010], Yang et al. [2011], and Jiang et al. [2014]) and search based
(Machado et al. [2012], Zhou et al. [2012], and Huang et al. [2013])) and deterministic
execution (Olszewski et al. [2009], Berger et al. [2009], and Devietti et al. [2009]).
These techniques allow the developer to observe a failing execution multiple times,
but simply reproducing a failure may provide no insight into its cause. The key to
debugging a concurrency bug is understanding the failure’s root cause, that is, the set
of event orderings that are necessary for failure. Although the number of events that
comprise a root cause is typically small [Burckhardt et al. 2010], it is often unclear
which events in a full schedule to focus on. Any operation in any thread may have
led to the failure and blindly analyzing a full schedule is a metaphorical search for a
needle in a haystack. On the other hand, even if the programmer finds the root cause,
they still face the difficult task of understanding and changing the code to prevent the
problematic thread interleaving from happening in the future.

We present Symbiosis, a system that helps finding and understanding a failure’s root
cause, as well as fixing the underlying bug. Figure 1 presents a schematic view of our
system. Symbiosis first collects single-threaded path profiles from a concrete, failing
execution. The profiles guide a symbolic execution, yielding per-thread symbolic event
traces compatible with the failure. These are then used to generate a Satisfiability
Modulo Theory (SMT) formulation, the solution to which represents a multithreaded
failing schedule. To prune irrelevant events from the failing schedule, Symbiosis gen-
erates an unsatisfiable SMT formulation encoding the failing schedule, but the absence
of the failure. As a result, the SMT solver reports a subset of constraints that conflict in
the unsatisfiable SMT formulation; their corresponding event orderings are necessary
for the failure, and form the pruned root-cause schedule. The root-cause schedule is
used in another SMT formulation to compute nonfailing, alternative schedules that
comprise reorderings of the root-cause schedule’s events. Symbiosis enhances the de-
bugging utility of the root-cause schedule by reporting only the important ordering
and dataflow differences between failing and nonfailing schedules. These differences
are dataflows between operations in the failing execution that do not occur in the cor-
rect execution and vice versa. We call the output of our novel debugging approach a
differential schedule projection (DSP).

DSPs simplify debugging for two main reasons. First, by showing only what differs
between a failing and nonfailing schedule, the programmer is exposed to a very small
number of relevant operations, rather than a full schedule. Second, DSPs illustrate not
only the failing schedule but also the way execution should behave, if not to fail. Seeing
the different event orders side by side helps understand the failure and, often, how
to fix the bug. Although Symbiosis is only able to isolate the failure for a particular
execution path, we still believe DSPs to be a significant improvement with respect
to more traditional debugging approaches, such as cyclic debugging (i.e., iteratively
reexecute a program’s failing execution in an attempt to understand the bug and
narrow its root cause).

Critically, Symbiosis produces a DSP from a single failing schedule, enabling its
use for failures observed rarely (i.e., in production). This contrasts to prior work in
[Lucia and Ceze 2013] and [Kasikci et al. 2015] that relies on statistical inference and,
therefore, needs to capture information from a significant amount of failing executions
in order to isolate the bug’s root cause effectively. Our evaluation in Section 5 shows that

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

Concurrency Debugging with Differential Schedule Projections 14:3

DSPs have, on average, 90% fewer events than full schedules and shows qualitatively,
with case studies, that DSPs help understand failures and fix bugs. Furthermore, we
conducted a user study with 48 participants to further support the claim that DSPs
allow for faster bug diagnosis.

To summarize, our contributions are as follows:

—An SMT constraint formulation, based on the computed failing schedule, that iden-
tifies the subschedule that is a failure’s root cause.

—A heuristic, based on SMT constraint formulations, that systematically varies the
order of root-cause events to find alternative nonfailing schedules similar to the
original failing schedule.

—A novel differential schedule projection methodology that isolates important con-
trol and dataflow changes between failing and nonfailing schedules computed by
Symbiosis.

—An implementation of Symbiosis for C/C++ and Java and an evaluation, showing the
debugging efficacy and efficiency of Symbiosis.

—A user study that provides evidence that DSPs allow developers to diagnose concur-
rency failures faster than with full failing schedules.

The rest of the article is organized as follows. Section 2 overviews the background
concepts most related to our work. Section 3 describes the Symbiosis system in detail,
namely its components and how it operates to produce DSPs. Section 4 reports the
implementation details. Section 5 presents the results of both the experimental eval-
uation and the user study and discusses the main findings. Finally, Section 6 reviews
the related work.

2. BACKGROUND

Symbiosis helps with concurrency debugging by leveraging prior work on symbolic
execution and SMT solving. This section briefly reviews these topics.

Concurrency Bugs. Concurrency bugs are errors in code that permit multithreaded
schedules that lead to a failure. Concurrency bugs have been studied extensively in
the literature [Lu et al. 2006; Flanagan et al. 2008; Zhang et al. 2010, 2011; Engler
and Ashcraft 2003; Savage et al. 1997; Flanagan and Freund 2009; Lucia et al. 2011;
Lucia and Ceze 2013; Lucia et al. 2008]. Data races [Savage et al. 1997; Flanagan and
Freund 2009; Engler and Ashcraft 2003], atomicity violations [Lu et al. 2006; Flanagan
et al. 2008; Lucia et al. 2008], ordering violations [Lu et al. 2008; Lucia and Ceze 2009;
Park et al. 2010; Zhang et al. 2010, 2011] and deadlocks [Engler and Ashcraft 2003;
Zamfir and Candea 2010b] are different types of concurrency bugs studied by prior
work. These bugs vary in their mechanism and result. For example, while data races
may lead to violations of sequential consistency [Lamport 1979], atomicity violations
may lead to unserializable behavior of atomic regions. We defer to the literature for
a detailed discussion of these bug types and their failure modes. Instead, we just
emphasize that they share the following important characteristic: They lead to a failure
when they permit operations in different threads to execute in an order that should
be forbidden. Symbiosis attacks the debugging problem by identifying such incorrect
operation orderings that constitute the root cause of a failure.

Symbolic Execution. Symbolic execution [King 1976] explores the space of possible
executions of a program by emulating or directly executing its statements. During
symbolic execution, some variables, such as inputs, have symbolic values. A symbolic
value represents a set of possible concrete values. Assignments to and from symbolic
variables and operations involving symbolic variables produce results that are also

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

14:4 N. Machado et al.

symbolic. When an execution reaches a branch dependent on a symbolic variable, it
spawns two identical copies of the execution state—one in which the branch is taken
and one in which the branch is not taken. Spawned copies continue independently
along these different paths and the process repeats for every new symbolic branch.
Each path has a path constraint, encoding all branch outcomes on that path. Thus,
the path constraint determines possible concrete values for symbolic variables that
lead execution down a particular path. To simplify complex symbolic constraints, some
systems employ concolic execution [Sen et al. 2005] which uses both concrete and
symbolic values for variables.

As we describe in Section 3.3, Symbiosis uses symbolic execution to find a path in
each thread that leads to a failure. Concretely, Symbiosis treats shared variables as
symbolic, because they might be modified nondeterministically by any thread during a
multithreaded execution. In our Symbiosis prototype for C/C++ programs, we manually
identify shared variables, whereas, in our prototype for Java applications, this is done
via static analysis. We discuss the impact of these choices in Section 4.

SMT Solvers. An SMT solver is a tool that, given a formula over variables, finds a
satisfying assignment of the variables or reports that it is unsatisfiable. SMT is based
on Boolean satisfiability (SAT). However, SMT is more expressive than SAT for, for
example, handling arithmetic. SAT and SMT are NP-complete, but decades of research
have produced solvers (e.g., Z3 De Moura and Bjørner [2008]) that practically solve
large problems. Practical SMT has found use in many areas: hardware [Emmer et al.
2010] and software verification [Qadeer 2009], program analysis [Lahiri and Qadeer
2008], and test generation [Tillmann and De Halleux 2008].

When an SMT formula is unsatisfiable, some SMT solvers [De Moura and Bjørner
2008] are able to explain why by reporting which constraints conflict in an unsatisfia-
bility core, or UNSAT Core. BugAssist [Jose and Majumdar 2011] pioneered the use of
the UNSAT core to help isolate errors in sequential programs. In this work, Symbiosis
makes novel use of this idea to debug concurrency errors and reduce the information
it must analyze when building differential schedule projections.

Computing Schedules with Symbolic Execution and SMT Solvers. Symbiosis
requires a schedule from a failing execution in order to isolate the root cause of a con-
currency bug. Although the technique used to obtain the failing schedule is orthogonal
to Symbiosis, in this work, we follow the approach proposed by CLAP [Huang et al.
2013]. CLAP is a system for reproducing concurrency failures, which links concurrency,
SMT, and symbolic execution.

Symbiosis builds on the following CLAP features: independent tracking of thread
control flow, use of guided symbolic execution, and resorting to SMT constraints to
compute a failing schedule (see Section 3). This approach uses concrete, per-thread
path profiles to guide a symbolic execution of the program and generate per-thread
symbolic traces. Then it encodes a set of SMT formulae that constrain the variables
contained in all threads’ sequential symbolic traces, along with additional constraints
encoding interthread dataflow and synchronization. When solved by an off-the-shelf
SMT solver, the formulation yields a failing, multithreaded schedule.

Like CLAP, Symbiosis can also reproduce bugs by adding constraints corresponding
to a failure’s manifestation (Section 3.3). However, despite these similarities, Symbiosis
differs fundamentally from CLAP in its purpose and mechanisms. CLAP aims at re-
playing failing schedules, while Symbiosis focus on isolating the root cause of concur-
rency bugs. Moreover, unlike CLAP, Symbiosis produces precise root-cause subsched-
ules and alternate, nonfailing subschedules. Symbiosis’s subschedule reports include
many fewer operations than full schedules and do not require examining the whole
schedule to find the few operations involved in the failure, as is the case with CLAP.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

Concurrency Debugging with Differential Schedule Projections 14:5

Fig. 1. Overview of Symbiosis. Boxes at the top represent processes. Boxes at the bottom represent inputs
and outputs of processes. Dashed arrows denote an input relationship and solid arrows denote and output
relationship. Bold boxes represent the final outputs of Symbiosis.

Symbiosis’s subschedule reports are the foundation of differential schedule projections,
a new debugging technique not explored by CLAP. Symbiosis’s mechanism for comput-
ing subschedules based on the SMT solver’s UNSAT core is novel, as is Symbiosis’s
technique for reordering event pairs to compute alternate, nonfailing subschedules.

3. SYMBIOSIS

In this section, we start by presenting an overview of Symbiosis and how it operates.
Then we describe in detail each component of our system.

3.1. Overview

Symbiosis is a technique for concisely reporting the root cause of a failing multithreaded
execution, alongside a nonfailing, alternate execution of the events that make up the
root cause. Symbiosis produces differential schedule projections, which reveal bugs’ root
causes and aid in debugging. Symbiosis has five phases (see Figure 1) as follows:

1. Symbolic trace collection. In a concrete failing program run, Symbiosis traces
the sequence of basic blocks executed by each thread independently. The per-thread
path profiles are used to guide symbolic execution, producing a set of per-thread traces
with symbolic information (e.g., path conditions and read-write accesses to shared
variables).

2. Failing schedule generation. Symbiosis produces an SMT formula that corre-
sponds to the symbolic execution trace. The formula includes constraints that represent
each thread’s path, as well as the failure’s manifestation, memory access orderings, and
synchronization orderings. The solution to the SMT formula corresponds to a complete,
failing, multithreaded execution. In other words, this solution specifies the ordering of
events that triggers the error.

3. Root cause subschedule generation. Symbiosis produces an SMT formula cor-
responding to the symbolic trace, but specifies that the execution should not fail, by
negating the failure condition. Combined with the constraints representing the order of

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

14:6 N. Machado et al.

events in the full, failing schedule, the SMT instance is unsatisfiable. The SMT solver
produces an UNSAT core that contains the constraints representing the execution
event orders that conflict with the absence of the failure. Those event orders are nec-
essary for the failure to occur, that is, the failure’s root-cause subschedule.

4. Alternate subschedule generation. Symbiosis examines each pair of events from
different threads in the root cause. For each pair, Symbiosis produces a new SMT
formula, identical to the one used to find the root cause, but with constraints implying
the ordering of the events in the pair reversed. When Symbiosis finds an instance that
is satisfiable, the corresponding schedule is very similar to the failing schedule1 but
does not fail. Symbiosis reports the alternate, nonfailing schedule that is identical to
the failing schedule but with the pair of events reordered.

The experimental results in Section 5 indicate that this technique is effective and
that Symbiosis was able to find a nonfailing schedule by reordering fewer than 10 pairs
of events for 10 of 13 test cases.

5. Differential schedule projection generation. Symbiosis produces a differential
schedule projection by comparing the failing schedule and the alternate, nonfailing
subschedule. The DSP shows how the two schedules differ in the order of their events
and in their dataflow behavior. Additionally, as the reordered pair from the alternate
nonfailing schedule eliminates an event order necessary for the failure to occur, it can
be leveraged by a dynamic failure avoidance system [Lucia and Ceze 2013] to prevent
future failures.

To better illustrate the main concepts of Symbiosis, we use a running example that
consists of the modified version of pfscan file scanner studied in prior work [Elmas et al.
2013]. A slightly simplified snippet of the program’s code is depicted in Figure 2(a). The
program uses three threads. The first thread enqueues elements into a shared queue.
The two other threads attempt to dequeue elements if they exist. A shared variable,
named filled, records the number of elements in the queue. The code in the get function
checks that the queue is nonempty (reading filled at line 10), decreases the count of
elements in the queue (updating filled at line 20), and then dequeues the element.

The code has a concurrency bug because it does not ensure that the check and update
of filled execute atomically. The lack of atomicity permits some unfavorable execution
schedules in which the two consumer threads both attempt to dequeue the queue’s last
element. In that problematic case, both consumers read that the value of filled is 1,
passing the test at line 10. One of the threads proceeds to decrement filled and dequeue
the element. The other reaches the assertion at line 19, reads the value 0 for filled, and
fails, terminating the execution. Figure 2(b) shows the interleaving of operations that
leads to the failure in a concrete execution.

The next sections show how Symbiosis starts from a concrete failing execution (like
the one in Figure 2(b)), computes a focused root cause, and produces a DSP to aid in
debugging.

3.2. Symbolic Trace Collection

Like CLAP [Huang et al. 2013], Symbiosis avoids the overhead of directly recording
the exact read-write linkages between shared variables that lead to a failure. Instead,
Symbiosis collects only per-thread path profiles from a failing, concrete execution. As
in prior work [Huang et al. 2013], Symbiosis’s path profile for a thread consists of the
sequence of executed basic blocks for that thread in the failing execution.

1By similar we mean that the alternate schedule comprises the same events as the failing schedule and
adheres to the original execution path.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

Concurrency Debugging with Differential Schedule Projections 14:7

Fig. 2. Running example. (a) Source code. (b) Concrete failing execution. (c) Per-thread symbolic execution
traces. (d) Failing Constraint Model.

Symbiosis uses the per-thread path profiles to guide a symbolic execution of each
thread and to produce each thread’s separate symbolic execution trace. Symbolic ex-
ecution normally explores all paths, following the path along both branch outcomes.
Symbiosis, in contrast, guides the symbolic execution to correspond to the per-thread
path profiles by considering only paths that are compatible with the basic block se-
quence in the profile. As symbolic execution proceeds, Symbiosis records information
about control-flow, failure manifestation, synchronization, and shared memory accesses
in each per-thread symbolic execution trace. Together, the traces are compatible with
the original, failing, multithreaded execution.

Each per-thread, symbolic, execution trace contains four kinds of information. First,
each trace includes a path condition that permits the failure to occur. A trace’s path
condition is the sequence of control-flow decisions made during the trace’s respective
execution. Second, the trace for the thread that experienced the failure must include
the event that failed (e.g., the failing assertion). Third, the trace must record synchro-
nization operations, noting their type (e.g., lock, unlock, wait, notify, fork, join, etc.),
and the synchronization variable involved (e.g., the lock address), if applicable. Fourth,
the trace must record loads from and stores to shared memory locations. A key aspect
of the shared memory access traces is that these are symbolic: Loads always read fresh
symbolic values and stores may write either symbolic or concrete values. Recall from
Section 2 that a symbolic value holds the last operation that manipulated a value. Also,

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

14:8 N. Machado et al.

a symbolic value may, itself, be an expression that refers to other symbolic or concrete
values.

Figure 2(c) illustrates a symbolic trace collection for our running example: It shows
the execution path followed by each thread for the failing schedule in Figure 2(b) and the
corresponding symbolic trace produced by Symbiosis. Each path condition in the trace
represents a control-flow outcome in the original execution (e.g., filled@2.10 > 0 denotes
that thread T2 should read a value greater than zero from filled at line 10). Thread
T2’s trace includes the assertion that leads to the failure. Each trace includes both
symbolic and concrete values in their memory access traces, as well as synchronization
operations from the execution. Note that we slightly simplified the threads’ traces to
keep the figure uncluttered. enqueue and dequeue also access shared data but we only
show operations that manipulate filled and perform synchronization because they are
sufficient to illustrate the failure.

Symbiosis can leverage any technique for collecting concrete path profiles and gener-
ating symbolic traces. In our implementation of Symbiosis that targets C/C++, we use a
technique very similar to the front-end of CLAP [Huang et al. 2013]: Symbiosis records
a basic block trace and uses KLEE to generate per-thread symbolic traces conformant
with the block sequence. Symbiosis for Java uses Soot [Vallée-Rai et al. 1999] to collect
path profiles and JPF [Visser et al. 2004] for symbolic execution. The implementation
details are described in Section 4.

With some additional engineering effort, Symbiosis could also use Pex [Tillmann and
De Halleux 2008] for C# or general R&R techniques [Huang et al. 2010; Zhou et al.
2012].

3.3. Failing Schedule Generation

The symbolic, per-thread traces do not explicitly encode the multithreaded schedule
that led to the failure. Symbiosis uses the information in the symbolic traces to con-
struct a system of SMT constraints that encode information about the execution. The
solution to those SMT constraints corresponds to a multithreaded schedule that ends
in failure and is compatible with each per-thread symbolic trace. This section describes
how the constraints are computed.

The SMT constraints refer to two kinds of unknown variables, namely the value
variables for the fresh symbolic symbols returned by read operations and the order
variables that represent the position of each operation from each trace in the final,
multithreaded schedule. We notate value variables as vart.l, meaning the value read
from variable var by thread t at line l. We notate order variables as Opt.l, meaning the
order of instruction Op executed by thread t at line l, where Op can be a read (R), write
(W), lock (L), unlock (U), or other synchronization operation such as wait/signal (our
notation differs slightly from that of Huang et al. [2013] for clarity).

Figure 2(d) shows part of the system of SMT constraints generated by Symbiosis for
our running example from the symbolic traces presented in Figure 2(c). The system,
denoted � f ail, can be decomposed into five sets of constraints:

� f ail = φpath ∧ φbug ∧ φsync ∧ φrw ∧ φmo,

where φpath encodes the control-flow path executed by each thread, φbug encodes the
occurrence of the failure, φsync encodes possible interthread interactions via synchro-
nization, φrw encodes possible interthread interactions via shared memory, and φmo
encodes possible operation reorderings permitted by the memory consistency model.
The following paragraphs explain how Symbiosis derives each set of constraints from
the symbolic execution traces.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

Concurrency Debugging with Differential Schedule Projections 14:9

Path Constraint (φpath). The path SMT constraint encodes branch outcomes dur-
ing symbolic execution. Symbiosis gathers path conditions by recording the branch
outcomes along the basic block trace from the concrete path profile. A thread’s path
constraint is the conjunction of the path conditions for the execution of the thread in the
symbolic trace. The φpath constraint is the conjunction of all threads’ path constraints.
Each conjunct represents a single control-flow decision by constraining the value vari-
ables for one or more symbolic operands. In our running example, the shared variable
filled is symbolic, resulting in a φpath with three conjuncts. The three conjuncts express
that the value of filled should be greater than 0 when thread T1 executes lines 10 and
19, as well as when thread T2 executes line 10. Figure 2(d) shows φpath for our example.

Failure Constraint (φbug). The failure SMT constraint expresses the failure’s nec-
essary conditions. The constraint is an expression over value variables for symbolic
values returned by some subset of read operations (e.g., those in the body of an assert
statement). Figure 2(d) shows φbug for the running example, representing the sufficient
condition for the assertion in thread T2 to fail.2

Synchronization Constraints (φsync). There are two types of synchronization SMT
constraints: partial order constraints and locking constraints.

Partial order constraints represent the partial order of different threads’ events re-
sulting from start/exit/fork/join/wait/signal operations. Concretely, start, join, and
wait operations are ordered with respect to fork, exit, and signal operations, respec-
tively. The constraints for start/fork and exit/join are easy to model, as they exhibit
a single mapping: The start event of a child thread must always occur after the corre-
sponding fork operation in the parent thread, whereas the exit event of a child thread
must always occur before the corresponding join operation in the parent thread. Let
St represent the start event of a thread t, Et the exit event of thread t, Ftp,tc the fork
operation of thread tc by thread tp, and Jtp,tc the join operation of thread tc by thread
tp. Their partial order constraints for these operations are then written as follows:

Ftp,tc < Stc

Etc < Jtp,tc.

The constraints for wait and signal, in contrast, are a little more complex. Similarly
to CLAP [Huang et al. 2013], we use a binary variable that indicates whether a given
signal operation is mapped to a wait operation. This is necessary because each signal
operation can signal exactly one wait operation, although in theory it can be mapped
to all wait operations on the same object. Let SG be the set with the signal operations
sg on a given object and let WT be the set of wait operations wt on the same object but
belonging to a thread different from that of sg. Also, let Sg and Wt denote the order of
sg and wt, respectively, and bsg

wt be the binary variable denoting whether sg is mapped
to wt. The corresponding partial order constraints are the following:⎛

⎝ ∨
∀sg∈SG

Sg < Wt ∧ bsg
wt = 1

⎞
⎠

∧ ∑
wt∈WT

bsg
wt ≤ 1.

The constraints above state that if a signal operation sg is mapped to a wait operation
wt (i.e., bsg

wt = 1), then sg must occur before wt and sg cannot signal any other wait
operation rather than wt (i.e.,

∑
wt∈WT bsg

wt ≤ 1).

2For calls to external libraries, we also mark the result of the calls as symbolic (Section 4).

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

14:10 N. Machado et al.

Locking constraints represent the mutual exclusion effects of lock (L) and unlock (U)
operations. Let P denote the set of locking pairs on a given locking object and consider
a particular pair L/U . The locking constraints entail the possible orderings between
L/U and all the remaining pairs in P and are written as follows:

∧
∀L′/U ′∈P

U < L′ ∨

∨
∀L′/U ′∈P

⎛
⎝U ′ < L ∧

∧
∀L′′/U ′′∈P, L′′/U ′′ 	=L′/U ′

U < L′′ ∨ U ′′ < L′

⎞
⎠ .

The constraint above is a disjunction of SMT expressions representing two possible
cases. In the first case, L/U is the first pair acquiring the lock and, therefore, U happens
before L′. In the second case, L/U acquires the lock released by another pair L′/U ′,
hence U ′ happens before L. Moreover, for any other pair L′′/U ′′, either L′′ acquires the
lock after U or L′ acquires the lock released by U ′′. Figure 2(d) shows a subset of the
locking constraints for our running example that involve the lock/unlock pair of thread
T0 (L0:3,U0:6).

Read-Write Constraints (φrw). Read-write SMT constraints encode the matching be-
tween read and write operations that leads to a particular read operation reading
the value written by a particular write operation. Read-write constraints model the
possible interthread interactions via shared memory. A read-write constraint encodes
that, for every read operation r on a shared variable v, if r is matched to a write w
of the same variable, then the order variable (and hence execution order) for all other
writes on v are either less than that of w or greater than that of r. The constraint also
implies that r’s value variable takes on the symbolic value written by w. Note that
read-write SMT constraints are special in that they affect order variables and value
variables.

Let rv be the value returned by a read r on v, and let W be a set of writes on v. Using
R to denote the order of r and Wi the order of write wi in W, φrw can be written as
follows:

∨
∀wi∈W

⎛
⎝rv = wi ∧ Wi < R

∧
∀w j∈W,w j 	=wi

Wj < Wi ∨ Wj > R

⎞
⎠ .

For example, in our running example, thread T0 reads filled at line 4. If T0 reads 0 at
that point, then the most recent write to filled must be the one at line 2. The matching
of that read and write implies that the order of the write must precede read operation
(i.e., W0.2 < R0.4), and that all the other writes to filled (e.g., W1.20) either occur before
W0.2 or after R0.4. The same reasoning is also applied for the remaining reads of the
program on symbolic variables.

Memory Order Constraints (φmo). The memory-order constraints specify the order
in which instructions are executed in a specific thread. Although is possible to express
different memory consistency models [Huang et al. 2013], in this article we opted not
to focus on relaxed memory ordering, instead focusing on subschedule generation and
differential schedule projections. Therefore, here we consider sequential consistency
(SC) only, meaning statements in a thread execute in program order. For the running
example in Figure 2(b), the memory order constraint requires that operations in thread
T0 respect the constraint W0.2 < L0.3 < R0.4 < W0.5 < U0.6.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

Concurrency Debugging with Differential Schedule Projections 14:11

3.4. Root Cause Subschedule Generation

Each order variable referred to by an SMT constraint represents the ordering of two
program events from the separate single-threaded symbolic traces. A binding of truth
values to the SMT order variables corresponds directly to an ordering of operations
in the otherwise unordered, separate, per-thread traces. Solving the constraint system
binds truth values to variables, producing a multithreaded schedule. The constraint
system includes a constraint representing the occurrence of the failure, so the produced
multithreaded schedule manifests the failure (φbug). Solving the generated SMT for-
mulae, Symbiosis produces a full, failing, multithreaded schedule φ f sch. The entire
multithreaded schedule may be long and complex and may contain information that is
irrelevant to the root cause of the failure. Symbiosis uses a special SMT formulation
to produce a root-cause subschedule that prunes some operations in the full schedule
but preserves event orderings that are necessary for the failure to occur. To compute
the root-cause subschedule, Symbiosis generates a new constraint system, denoted
�root, that is designed to be unsatisfiable in a way that reveals the necessary orderings.
Symbiosis leverages the ability of the SMT solver to produce an explanation of why a
formula was unsatisfiable to report only those necessary orderings.

To build the root-cause subschedule SMT formula, Symbiosis logically inverts the
failure constraint, effectively requiring the failure not to occur (i.e., ¬φbug). Symbiosis
adds constraints to the formula that directly encode the event orders in φ f sch (i.e.,
the full, failing schedule that was previously computed). The complete root-cause sub-
schedule formula is then written as follows:

�root = φpath ∧ ¬φbug ∧ φsync ∧ φrw ∧ φmo ∧ φ f sch.

The original SMT formula that Symbiosis used to find the full failing schedule con-
siders all possible multithreaded schedules that are consistent with the symbolic,
per-thread schedules. In contrast, the root-cause subschedule SMT formula adds the
failing schedule φ f sch constraint, accommodating only the full, failing schedule. Com-
bining the inverted failure constraint and the ordering constraints for the full, failing
schedule makes an unsatisfiable constraint formula: The inverted failure constraint
requires the failure not to occur and the failing schedule’s ordering constraints require
the failure to occur.

When an SMT solver, like Z3, attempts to solve the unsatisfiable formula, it produces
an unsatisfiable (UNSAT) core which is a subset of constraint clauses that conflict, leav-
ing the formula unsatisfiable. The UNSAT core for �root encodes the subset of clauses
that conflict because the φ f sch requires the failure to occur and ¬φbug requires the fail-
ure not to occur. The event orderings that correspond to those conflicting constraints
are the ones in φ f sch that imply φbug. Those orderings are a necessary condition for
the failure; their corresponding constraints, together with ¬φbug, are responsible for
the unsatisfiability of �root. Reporting the subschedule corresponding to the UNSAT
core yields fewer total events than are in the full, failing schedule, yet includes event
orderings necessary for the failure.

Figure 3(a) shows a possible failing schedule produced by the constraint system
corresponding to the execution depicted in Figure 2(d). The failure constraint φbug
requires the corresponding execution to manifest the failure. The generated path and
memory access constraints are compatible with the failure and the system is satisfiable,
producing the failing execution trace shown (φ f sch). Note that Symbiosis inserts a
synthetic unlock event (U2.20) in the model, in order to preserve the correct semantics
of synchronization constraints (see Section 4).

In Figure 3(b), the failure constraint is negated, requiring the corresponding execu-
tion not to manifest the failure (i.e., filled2.19 > 0 and the assertion at line 19 does not
fail). On the other hand, φ f sch satisfies only the dataflows encoded in φrw that correspond

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

14:12 N. Machado et al.

Fig. 3. Root cause and alternate schedule generation. (a) Possible failing schedule produced by the SMT
solver for the constraint system in Figure 2(d) ((U2.20) represents a synthetic unlock event). (b) Root cause
subschedule, which corresponds to the UNSAT core produced by the solver. (c) Candidate pair reordering
and respective alternate schedule. (d) Differential Schedule Projection generated by Symbiosis.

to the failing schedule, which means that R2.19 is forced to receive the value written
by W1.20. Consequently, filled2.19 becomes 0 instead of greater than 0, as required by
the negated failure constraint (note that R2.19 defines the value of filled2.19 read by the
assertion). Since both subformulae φ f sch and ¬φbug conflict with each other, the solver
yields unsatisfiable for this model. In addition, the solver outputs the UNSAT core con-
taining the subset of constraints of φ f sch that conflict with ¬φbug (see Figure 3(b)). Note
that the UNSAT core shows why �root is unsatisfiable: The negated failure constraint
conflicts with the subset of ordering constraints from φ f sch that cause filled to be less
than 0 when thread 2 executes line 19.

In our experience, the UNSAT core produced by Z3 is typically not minimal (although
it is always an overapproximation of the root cause). As a result, while helpful, an
UNSAT core alone is not sufficient for debugging and necessitates a differential sched-
ule projection to isolate a bug’s root cause.

3.5. Alternate Subschedule Generation

In addition to reporting the bug’s root cause, Symbiosis also produces alternate, non-
failing subschedules. These alternate subschedules are nonfailing variants of the
root-cause subschedule, with the order of a single pair of events reversed. Alternate
subschedules are the key to building differential schedule projections (Section 3.6).
Symbiosis generates alternate, nonfailing subschedules after it identifies the root
cause. To generate an alternate subschedule, Symbiosis selects a pair of events from
different threads that were included in the bug’s root cause. Symbiosis then generates
a new constraint model, like the one used to identify the root cause. We call this model
�alt. The �alt model includes the inverted failure constraint. The model also includes a
set of constraints, denoted φinvsch, that encode the original full, failing schedule, except
the constraint representing the order of the selected pair of events is inverted. Inverting
the order constraint for the pair of events yields the following new constraint model:

�alt = φpath ∧ ¬φbug ∧ φsync ∧ φrw ∧ φmo ∧ φinvsch.

The new �alt model corresponds to a different, full execution schedule in which the
events in the pair occur in the order opposite to that in the full, failing schedule. If this
new model is satisfiable, then reordering the pair of events in the full, failing schedule
produces a new alternate schedule in which the failure does not manifest, as shown in
Figure 3(c).

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

Concurrency Debugging with Differential Schedule Projections 14:13

If there are many event pairs in the root cause, then Symbiosis must generate
and attempt to solve many constraint formulae. Symbiosis systematically evaluates
a set of candidate pairs in a fixed order, choosing the pair separated by the fewest
events in the original schedule first. The reasoning behind this design choice is that
events in a pair that are further apart are less likely to be meaningfully related
and, thus, less likely to change the failure behavior when their order is inverted.
The experimental results in Section 5.3 show that this heuristic is effective for most
cases.

By default, we configured Symbiosis to stop after finding a single alternate, nonfailing
schedule. However, the programmer can instruct Symbiosis to continue generating
alternate schedules, given that studying sets of schedules may reveal useful invariants
[Lucia et al. 2011].

Arbitrary operation reorderings may yield infeasible schedules. Reordering may
change interthread data flow, producing values that are inconsistent with a prior
branch dependent on those values. The inconsistency between the data and the execu-
tion path makes the execution infeasible. Symbiosis produces only feasible schedules by
including path constraints in its SMT model. If a reordering leads to inconsistency, then
the SMT path constraints become unsatisfiable and Symbiosis produces no schedule.
We denote this property as feasibility.

Moreover, our event pair reordering technique has the property of guaranteeing that
if there exists a feasible alternate schedule that adheres to the original execution path
and prevents the failure, then Symbiosis finds it. We denote this property as 1-Recall.3

The feasibility and 1-Recall properties are proved in the following paragraphs.

3.5.1. Alternate Schedule Feasibility. Intuitively, what we want to show is that any alter-
nate schedule, resulting from a reordering of events in a failing schedule, is feasible
if deemed as satisfiable by Symbiosis’s solver. To formally define the feasibility of a
schedule, we rely on the concept of (sequential) consistency proposed in Herlihy and
Wing [1990] and adapt the notation used in Huang et al. [2014]. Hence, a schedule is
considered feasible if it is sequentially consistent.

Consider a schedule σ to be a sequence of events e. Events are operations performed
by threads on concurrent objects (e.g., shared variables, locks, etc.) for data sharing and
synchronization purposes. A concurrent object is behaviorally defined by a set of atomic
operations and by a serial specification of its legal computations, when performed in
isolation [Herlihy and Wing 1990]. For instance, a shared variable is a concurrent
object containing read and write operations, whose serial specification states that each
read returns the value of the most recent write.

Let σe denote the prefix of schedule σ up to e (inclusive): If σ = σ1eσ2, then σe is σ1e.
Moreover, let σ[op,var,thread] represent the restriction of σ to events involving operations of
type op, on variable var, by thread thread. For instance, σ[R,∗,1] represents the projection
of schedule σ to read operations performed by thread 1 on all shared variables; σ[W,v,∗]
consists of the restriction of σ to write operations on shared variable v by any thread,
and so on.

An alternate schedule of σ is a schedule σ ′ that exhibits the same per-thread sched-
ules as σ but permits different orders of events from different threads: σ ′

[∗,∗,t] = σ[∗,∗,t],
for each thread t.

3Similarly to the definition in the field of information retrieval, we use recall to denote the fraction of
relevant solutions (i.e., solutions that prevent the failure and adhere to the same path constraints as the
failing schedule) that Symbiosis successfully outputs. The 1-Recall property, thus, indicates that all solutions
output by Symbiosis are relevant.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

14:14 N. Machado et al.

Schedule σ is (sequentially) consistent iff σ[∗,o,∗] satisfies o’s serial specification for any
concurrent object o [Herlihy and Wing 1990]. More formally, a schedule σ is sequentially
consistent when it meets the following requirements:

Read Consistency. A read event returns the value written by the most recent write
event on the same variable. Formally, if e is a read event in σ on variable v, then
data(e) = data(lastwrite(σe[W,v,∗])), where data(e) gives the value returned by the read event
e, and data(lastwrite(σe[W,v,∗])) is the last value written on variable v in σe.

Lock Mutual Exclusion. Each unlock (U) event is preceded by a lock (L) event on the
same lock object by the same thread, and a locking pair cannot be interleaved by any
other L or U event on the same object. Formally, for any lock object l, if σ[∗,l,∗] = e1e2...en
then ek = L for all odd indexes k ≤ n, ek = U for all even indexes k ≤ n, and thread(ek) =
thread(ek+1) for all odd indexes k with k < n.

Must Happen-Before. Let start(t)/exit(t) be the first/last event of thread t. Then a
start event in a thread t′ can only occur in σ after t′ is forked by thread t, that is, for any
event e = start(t′) in σ , σ[∗,∗,t′] begins with e and there exists precisely one fork(t, t′) event
in σe. Similarly, a join event in a thread t can only occur in σ after t′ has ended, that is,
for any event e = exit(t′) in σ , σ[∗,∗,t′] terminates with e and there exists precisely one
join(t, t′) event in σe.

Note that branch conditions do not have serial specifications, and hence they can
affect the control flow of an execution but not the consistency of its schedule. However,
since we do not have information regarding operations in other execution paths rather
than the one captured in the concrete trace, we conservatively assume that an alternate
schedule must have the same control flow as the failing schedule (except for the asser-
tion corresponding to the bug condition). Therefore, we can say that an alternate sched-
ule is feasible iff it meets the aforementioned consistency requirements and adheres
to the branch conditions of the failing schedule. We now prove the following theorem:

THEOREM 3.1 (FEASIBILITY). Given a feasible failing schedule σ , any alternate schedule
σ ′ that is satisfiable by Symbiosis’s solver is feasible.

PROOF. To prove the theorem above, we will first show that any alternate schedule
that satisfies our SMT constraint model in Section 3.5 is sequentially consistent, that
is it provides read consistency, lock mutual exclusion, and must happen-before proper-
ties. Then we will show that any alternate schedule that is considered satisfiable by
Symbiosis’s solver also satisfies the same path conditions as the failing schedule.

The read consistency property requires that a read event returns the value written
by the most recent write event on the same variable. In our constraint model, this
property holds from the read-write constraints. As shown in Section 3.3, the read-write
constraints encode all possible linkages between reads and writes in the symbolic
traces. This means that, for a given read event e on a shared variable v, the read-write
formulae include a disjunction of constraints encoding the mapping between the value
returned by e and all the existing writes on v. Hence, considering rv to be the value
returned by e in a schedule σe (i.e., rv = data(e)), there always exists a write wl such
that wl = data(lastwrite(σe[W,v,∗])). In other words, wl is the most recent write on v with
respect to e and satisfies the following constraint: rv = wl ∧ Wl < Re

∧
∀w j∈W,w j 	=wl

Wj <

Wl ∨ Wj > Re, where capital letters signify order variables, that is, Wl and R indicate
the order of write wl and read event e in schedule σ , respectively.

The lock mutual exclusion property holds from the locking constraints in our SMT
model, as they encode the mutual exclusion effects of the acquisition and release of
lock objects. To prove this, we show that any locking order that satisfies our locking

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

Concurrency Debugging with Differential Schedule Projections 14:15

constraint formulae is of form L1U1L2U2LkUk . . . LnUn,∀k≤n, with thread(Lk) =
thread(Uk), as required by the lock mutual exclusion property. Recall the locking con-
straints for a locking pair L/U on a lock object l in a thread t4, as shown in Section 3.3:

i)
∧

∀L′/U ′∈P
U < L′ ∨

ii)
∨

∀L′/U ′∈P

⎛
⎝U ′ < L ∧

∧
∀L′′/U ′′∈P,L′′/U ′′ 	=L′/U ′

U < L′′ ∨ U ′′ < L′

⎞
⎠ .

According to our SMT constraint system, it must be the case that either (i) L/U
is the first locking pair in the schedule or (ii) it acquires the lock on l released by a
previous locking pair L′/U ′ (and, here, all the other locking pairs either occur before
L′/U ′ or after L/U). Let k denote the order in which the pair L/U holds the lock
in a given schedule, that is, Lk/Uk is the kth pair acquiring the lock in the sched-
ule. If k = 1, then Lk/Uk is the first pair acquiring the lock on l (i.e., L1/U1), which
means that the portion of the locking constraint formula for L1/U1 that will be true is
(i): U1 < L2 ∧ U1 < L3 ∧ . . . ∧ U1 < Ln.

In turn, when 1 < k ≤ n, the pair Lk/Uk will acquire the lock released by
the pair Lk−1/Uk−1, thus satisfying the constraint subformula (ii) instead: Uk−1 <
Lk

∧
∀1≤ j≤n, j 	=k, j 	=k−1,Uk < Lj ∨ U j < Lk−1. However, note that, when k = n, the con-

straint will be of type: U1 < Ln ∧ U2 < Ln ∧ . . . ∧ Un−1 < Ln, meaning the pair Ln/Un is
the last one acquiring the lock.

In sum, since the constraints enforce that a given pair Lk/Uk can only acquire the lock
released by a single pair Lk−1/Uk−1, it follows that each locking pair will have a unique
value of k, that is, a unique position in the schedule. Therefore, any global locking order
that satisfies our locking constraints is of the form L1U1L2U2LkUk . . . LnUn,∀k≤n.

The must happen-before property follows directly from the partial order constraints
described in Section 3.3: The operations St, Et, Ftp,tc, Jtp,tc correspond, respectively,
to the events start(t), exit(t), fork(t, t′), and join(t, t′) mentioned in the beginning of this
section. Therefore, the partial order constraints in our SMT model directly encode
the necessary happen-before guarantees required for a schedule to be sequentially
consistent according to Herlihy and Wing [1990].

3.5.2. Alternate Schedule 1-Recall. In addition to feasibility, another important property
that we are interested in proving is the 1-Recall property of Symbiosis with respect to
finding alternate, nonfailing schedules via event pair reordering. The 1-Recall property
can be defined as the following theorem:

THEOREM 3.2 (1-RECALL). Given a failing schedule σ , let A be the set of feasible
alternate schedules of σ that adhere to the same execution path and prevent the failure.
Let S be the set of alternate schedules output5 by Symbiosis. If |A| ≥ 1, then |S| ≥ 1 ∧
S ⊆ A.

PROOF. Informally, the above theorem states that, given a feasible failing schedule
σ , if there exists a feasible (nonfailing) alternate schedule σ ′, then Symbiosis will find
it.

We divide the proof of the theorem into three steps. First, we define the condition
necessary and sufficient that any alternate schedule σa ∈ A must verify in order not to

4Note that our locking constraints operate over the locking pairs extracted from each thread’s symbolic
traces, therefore it is always the case that thread(L) = thread(U) for every pair L/U .
5We say that an alternate schedule is output by Symbiosis iff it is deemed as satisfiable by the solver.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

14:16 N. Machado et al.

trigger the failure. Second, we show that any alternate schedule σ ′ output by Symbiosis
meets this condition (i.e., S ⊆ A). Third, we show that if there exist feasible alternate
schedules that prevent the failure, then Symbiosis finds at least one of them (i.e.,
|A| ≥ 1 ⇒ |S| ≥ 1).

For a given failing execution, let F be the minimal set of events that are sufficient
to trigger the concurrency failure, σ[F] be the projection of the failing schedule σ to
the events in F (i.e., σ[F] is the minimal ordered sequence of events that causes the
concurrency failure), and σa[F] be the projection of the alternate schedule σa ∈ A to the
events in F .

It has been shown that if σa[F] 	= σ[F], then σa does not trigger the failure [Lucia and
Ceze 2013]. This result has been named Avoidance-Testing Duality and, informally,
states that, given any ordered sequence of events that trigger a concurrency failure, it
suffices to perturb just one pair of events to avoid the failure [Lucia and Ceze 2013].

Since, for any alternate schedule σa ∈ A, σa[F] 	= σ[F] must hold, to prove that S ⊆ A,
using the result above, we only need to show that ∀σ ′∈S , σ ′

[F] 	= σ[F].
Consider R to be the set of events belonging to the root cause produced by the

constraint formula �root (see Section 3.4). Recall that Symbiosis generates alternate
schedules by (exhaustively) selecting pairs of events from R to be inverted in the
original failing schedule.

Let σ ′ = invert(σ, e j, ek) be the alternate schedule σ ′ that Symbiosis produces by
reordering the jth and kth events in σ , with j < k. Considering tk as the thread of
event ek (i.e., tk = thread(ek)) and rewriting σ = e1e2 . . . e j−1e je j+1 . . . ek−1ekek+1 . . . en as
σ = αe jβekγ , then σ ′ = invert(σ, e j, ek) = αβ[∗,∗,tk]eke jβ\β[∗,∗,tk]γ . Here, β[∗,∗,tk] corresponds
to the events by thread tk that occur between e j and ek in σ , and β \β[∗,∗,tk] corresponds to
the set of events β excluding the events in β[∗,∗,tk]. In other words, the alternate schedule
σ ′ is computed by placing ek right before e j , as well as all the events, belonging to the
same thread of ek, that occur between e j and ek in the failing schedule σ .

Let now e fj , e fk be a pair of events selected by Symbiosis to be inverted, such that
e fj , e fk ∈ F . Note that we know that ∃e j ,ek∈R : e j, ek ∈ F because the UNSAT core
output by the solver (which corresponds to R) always contains, at least, the events
belonging to the minimal sequence of events that leads to the bug. Therefore, F ⊆ R
and ∃e j ,ek∈R : e j, ek ∈ F holds by construction.

If σ[F] = α f e f j β f e fkγ f is the minimal ordered sequence of events that causes σ to
fail, and σ ′ = invert(σ, e fj , e fk) is the alternate schedule output by Symbiosis, then
σ ′

[F] = α f β f [∗,∗,thread(e fk)]e fke f j β f \ β f [∗,∗,thread(e fk)]γ f . Thus, σ ′
[F] 	= σ[F] is true and σ ′ ∈ A.

On the other hand, note that, for all event pairs e j, ek ∈ R and σ ′′ = invert(σ, e j, ek), if
e j, ek 	∈ F , then σ ′′

[F] = σ[F] will hold and the solver will yield unsatisfiable. Thus, σ ′′ 	∈ S
and it is not output by Symbiosis.

Finally, we prove that |A| ≥ 1 ⇒ |S| ≥ 1 by contradiction. Suppose |A| ≥ 1 and
S = ∅, then it must be the case that there is a feasible nonfailing, alternate schedule
σa that verifies the condition σa[F] 	= σ[F] and is not obtainable by reordering pairs of
events in R (given that Symbiosis attempts to invert all pairs of events in R). However,
if σa is not the result of a reordering of events in R, then it does not comprise events
from F (since F ⊆ R). Consequently, σa cannot belong to A, because it does not include
the same set of events nor adheres to the same execution path as the original failing
schedule σ , as required by the definition of A. This contradicts our assumption.

As final remark, note that Symbiosis requires the alternate, nonfailing schedule to
adhere to the same control-flow as the original failing schedule. This means that, for
concurrency bugs whose root cause is related to schedule-sensitive branches [Huang
and Rauchwerger 2015] (i.e., path- and schedule-dependent bugs), Symbiosis is not

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

Concurrency Debugging with Differential Schedule Projections 14:17

able to produce an alternate schedule. We leave the support for isolating path- and
schedule-dependent bugs for future work.

3.6. Differential Schedule Projection Generation

DSP is a novel debugging methodology that uses root-cause subschedules and nonfail-
ing alternate subschedules. The key idea behind debugging with a DSP is to show the
programmer the salient differences between failing, root-cause schedules and nonfail-
ing, alternate schedules. Examining those differences helps the programmer under-
stand how to fix the bug, rather than to help them understand the failure only, like
techniques that solely report failing schedules.

Concretely, a DSP consists of a pair of subschedules decorated with several pieces of
additional information. The first subschedule is the root-cause subschedule, which is
the source of the projection. The second subschedule is an excerpt from the alternate,
nonfailing schedule, which is the target of the projection.

The order of memory operations differs between the schedules and, as a result, the
outcome of some memory operations may differ. A read may observe a different write’s
result in one schedule than it observed in another, or two writes may update memory
in a different order in one schedule than in another, leaving memory in a different
final state. These differences are precisely the changes in dataflow that contribute to
the failure’s occurrence. Symbiosis highlights the differences by reporting dataflow
variations: dataflow between operations in the source subschedule that do not occur in
the target subschedule and vice versa.

To simplify its output, Symbiosis reports only a subset of operations in the source
and target subschedules. An operation is included if it makes up a dataflow variation
or if it is one of a pair of operations that occur in a different order in one subschedule
than in the other. Alternate, nonfailing schedules vary in the order of a single pair of
operations, so all operations that precede both operations in the pair occur in the same
order in the source and target subschedules. Symbiosis does not report operations
in the common prefix, unless it is involved in a dataflow variation. By selectively
including only operations related to dataflow and ordering differences, a DSP focuses
programmer attention on the changes to a failing execution that lead to a nonfailing
execution. Understanding those changes are the key to changing the program’s code to
fix the bug. For instance, the DSP in Figure 3(d) shows that the dataflow W1.20 → R2.19
(in φ f sch) changes to W0.4 → R2.19 (in φinvsch). This dataflow variation is the failure’s
root cause. In addition, note that, by reordering the events, the DSP also suggests that
the block of operations L2.9–(U2.20) should execute atomically, which indeed fixes the
bug.

3.7. DSP Optimization: Context Switch Reduction

The SMT solver does not take into account the number of context switches when solv-
ing the failing constraint system. As a consequence, the failing schedule produced
may exhibit a fine-grained entanglement of thread operations, which hinders analysis.
Although DSPs help obviate most of the interleaving complexity by pruning the com-
mon portions between the failing and the alternate schedules, they may still depict
unnecessary data dependencies. Figure 4(a) illustrates this scenario.

The program in the figure contains two threads (T1 and T2), three shared variables
(x, y, and z), and an assertion that checks whether x!=0. The DSP in Figure 4(a) shows
a possible failing schedule and depicts the dataflow variations with respect to the
corresponding alternate schedule. We can see that the DSP highlights differences in
the dataflow for shared variables x, y, and z, although solely the one for x is indeed
related to the bug’s root cause. Note that, for this example, the alternate schedule is
produced by inverting the event x=0 (in T2) with assert(x!=0) (in T1).

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

14:18 N. Machado et al.

Fig. 4. Context Switch Reduction. (a) DSP without context switch reduction; (b) DSP with context switch
reduction. Arrows depict execution dataflows.

To mitigate the amount of irrelevant data dependencies in DSPs, we apply a prepro-
cessing stage to reduce the number of context switches in the failing schedule prior to
the generation of the alternate schedule. Since finding the minimal number of context
switches that triggers a failure is NP-hard [Jalbert and Sen 2010], we developed an
algorithm inspired in Tinertia [Jalbert and Sen 2010], which is a trace simplification
heuristic that runs in polynomial time with respect to the size of the trace. Our context
switch reduction (CSR) algorithm is described in Algorithm 1. We study the impact of
CSR in DSP generation in Section 5.3.3.

ALGORITHM 1: Context Switch Reduction (CSR)
Input: failing schedule σ ; constraint system � f ail
Output: failing schedule σcur with the number of context switches (potentially) reduced

1 σcur ← σ
2 repeat
3 σold ← σcur
4 for i = 1 to |σcur | do
5 σtmp ← moveUpSeg(σcur, i)
6 if solve(� f ail, σtmp) is satisfiable then
7 σcur ← σtmp
8 end
9 end

10 for i = |σcur | to 1 do
11 σtmp ← moveDownSeg(σcur, i)
12 if solve(� f ail, σtmp) is satisfiable then
13 σcur ← σtmp
14 end
15 end
16 until numCS(σold) ≤ numCS(σcur);
17 return σcur

The CSR algorithm receives a failing schedule σ and the constraint system � f ail (see
Section 3.3) as input. All the context switch reduction actions are applied to σcur, and
whenever the schedule σtmp, resulting from the application of an action, satisfies the
constraint system � f ail, that schedule is stored into σcur.

CSR starts by initializing σcur to the input schedule σ and then enters the main
loop (lines 2–16). In lines 4–9, the algorithm does a forward pass over the schedule
and applies the moveUpSeg action for each event e in the schedule (line 5). This action

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

Concurrency Debugging with Differential Schedule Projections 14:19

operates at the thread segment6 level; therefore, it has an effect only if e is the last
operation of the segment (otherwise it just proceeds to the next event). When e is in the
tail of the segment, moveUpSeg finds the next thread segment after e that is executed
by the same thread and merges it with the thread segment that contains e. If this
move produces a schedule that still satisfies the constraint model (line 6), then we
have successfully found a schedule with one context switch less and store it into σcur
(line 7). As an example of this action, consider the event x = 1 in the failing schedule
of Figure 4(a). If we apply moveUpSeg to this event, then its thread segment will be
augmented with the next thread segment by the same thread (i.e., y = 1). The schedule
resulting from this move will then be x = 1; y = 1; x = 0; (. . .).

The next step of the CSR algorithm does a backwards pass over the schedule and
applies the moveDownSeg action for each event e in the schedule (lines 10–15). Symmet-
rically to moveUpSeg, moveDownSeg looks for the previous thread segment before e that
is executed by the same thread and merges it with the thread segment that contains
e. Hence, moveDownSeg only has an effect if e is the first action of the thread segment.
This technique is particularly helpful to eliminate context switches in the presence of
partial order invariants. For instance, consider two thread segments A and B of thread
T1, interleaved by a segment C of thread T2. If B contains a join event and C contains
an exit event, then moveUpSeg will yield unsatisfiable when pulling B upwards to be
merged with A, because B cannot occur before C. In contrast, moveDownSeg will be
valid because A can be merged down with B and execute after C without breaking the
partial order invariant.

At the end of each iteration of the main loop, CSR computes the number of context
switches of σcur (given by numCS(σcur)) and compares this value to that of σold. If σcur con-
tains fewer context switches than σold, then the algorithm proceeds to further simplify
σcur. Otherwise, CSR terminates and returns σcur as the simplified schedule.

Figure 4(b) shows the DSP obtained after applying the CSR algorithm to the failing
schedule in Figure 4(a). We can see that the single dataflow variation that is now
depicted is the one that explains the failure.

It should be noted that Symbiosis could also leverage other trace simplification tech-
niques, which do not rely on SMT solver invocations. For example, SimTrace [Huang
and Zhang 2011] is a static technique that reduces the number of context switches
in an execution schedule by computing a graph of dependences of the events in the
schedule.

4. IMPLEMENTATION

4.1. Instrumenting Compiler and Runtime

Our Symbiosis prototype implements trace collection for both C/C++ and Java pro-
grams. C/C++ programs are instrumented via an LLVM function pass. Java programs
are instrumented using Soot [Vallée-Rai et al. 1999], which injects path logging calls
into the program’s bytecode. Like CLAP, we assign every basic block with a static iden-
tifier and, at the beginning of each block, we insert a call to a function that updates the
executing thread’s path. The function logs each block as the tuple (thread Id, basic block
Id) whenever the block executes. The path logging function is implemented in a custom
library that we link into the program. Although our prototype is fully functional, it has
not been fully optimized yet. For instance, lightweight software approaches (e.g., Ball
and Larus [1994]) or a hardware accelerated approaches (e.g., Vaswani et al. [2005])
could also be used to improve the efficiency of path logging. The Symbiosis prototype
is publicly available at https://github.com/nunomachado/symbiosis.

6We consider a thread segment to be a maximal sequence of consecutive events by the same thread.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

https://github.com/nunomachado/symbiosis

14:20 N. Machado et al.

4.2. Symbolic Execution and Constraint Generation

Symbiosis’s guided symbolic execution for C/C++ programs has been implemented
on top of KLEE [Cadar et al. 2008]. Since KLEE does not support multithreaded
executions, similarly to CLAP, we fork a new instance of KLEE’s execution to handle
each new thread created. We also disabled the part of KLEE that solves path conditions
to produce test inputs because Symbiosis does not use them. For Java programs, we
have used Java PathFinder (JPF) [Visser et al. 2004]. In this case, we have disabled
the handlers for join and wait operations to allow threads to proceed their symbolic
execution independently, regardless of the interleaving. Otherwise, we would have to
explore different possible thread interleavings when accessing these operations, in
order to find one conforming with the original execution.

Additionally, we made the following changes to both symbolic execution engines.
First, we ignore states that do not conform with the threads’ path profiles traced at
runtime, which allows to guide the symbolic execution along the original paths alone.
Second, we generate and output a per-thread symbolic trace containing read/write
accesses to shared variables, synchronization operations, and path conditions observed
across each execution path.

Consistent Thread Identification. Symbiosis must ensure threads are consistently
named between the original failing execution and the symbolic executions. We use a
technique previously used in jRapture [Steven et al. 2000] that relies on the observation
that each thread spawns its children threads in the same order, regardless of the global
order among all threads. Symbiosis instruments thread creation points, replacing the
original PThreads/Java thread identifiers with new identifiers based on the parent-
children order relationship. For instance, if a thread ti forks its jth child thread, the
child thread’s identifier will be ti: j .

Marking Shared Variables as Symbolic. Precisely identifying accesses to shared
data, in order to mark shared variables as symbolic, is a difficult program analysis
problem, which is orthogonal to our work. Although it is possible to conservatively mark
all variables as symbolic, varying the number of symbolic variables varies the size and
complexity of the constraint system. For C/C++ programs, we manually marked shared
variables as symbolic, like prior work [Huang et al. 2013]. We also marked variables
symbolic if their values were the result of calls to external libraries not supported
by KLEE. For Java programs, we use Soot’s thread-local objects (TLO) static escape
analysis strategy [Halpert et al. 2007], which soundly overapproximates the set of
shared variables in a program (i.e., some nonshared variables might be marked shared).
At instrumentation time, Symbiosis logs the code point of each shared variable access.
During the symbolic execution, whenever JPF attempts to read or write a variable, it
consults the log to check whether that variable is shared. If so, then JPF treats the
variable as symbolic.

Comparing the two approaches, manually identifying the shared variables is clearly
more complex and tedious than employing a static analysis, as it requires a careful
inspection of the code. Nevertheless, we opted for following the former approach in
our prototype for C/C++ applications, because we were not familiar with a thread
escape analysis, similar to that of Soot, for this kind of program. Alternatively, one
could employ static data race detectors to identify shared variables [Voung et al. 2007],
although these often suffer from false positives.

Locks Held at Failure Points. If a thread holds a lock when it fails, then a reordering
of operations in the critical region protected by the lock may lead to a deadlocking
schedule. Other threads will wait indefinitely attempting to acquire the failing thread’s
held lock because the failing thread’s execution trace includes no release. We skirt this

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

Concurrency Debugging with Differential Schedule Projections 14:21

problem by adding a synthetic lock release for each lock held by the failing thread at
the failure point. The synthetic releases allow the failing thread’s code to be reordered
without deadlocks.

4.3. Schedule Generation and DSPs

We implemented failing and alternate schedule generation, as well as differential
schedule projections, from scratch in around 4K lines of C++ code. After building the
SMT constraint formula, Symbiosis solves it using Z3 [De Moura and Bjørner 2008].
Symbiosis then parses Z3’s output to obtain the solution of the model, or the UNSAT
core, when generating the root-cause subschedule. Finally, to pretty-print its output,
Symbiosis generates a graphical report (using Graphviz7) showing the differences be-
tween the failing and the alternate schedules.

5. EVALUATION

Our evaluation of Symbiosis focuses on answering the following three questions:

(1) How efficient is Symbiosis in collecting path profiles and symbolic path traces?
(Section 5.1)

(2) How efficient is Symbiosis in solving its SMT constraint formulae? (Section 5.2)
(3) How useful are DSPs to diagnose and fix concurrency bugs? (Section 5.3)

We substantiate our results with characterization data and several case studies,
using buggy, multithreaded C/C++ and Java applications, including both real-world
and benchmark programs. We used four C/C++ test cases: crasher, a toy program
with an atomicity violation; stringbuffer, a C++ implementation of a bug in the Java
JDK1.4 StringBuffer library, developed in prior work [Flanagan and Qadeer 2003];
bbuf , a shared buffer implementation [Huang et al. 2013]; pfscan, a real-world parallel
file scanner adapted for research by Elmas et al. [2013]; and pbzip2, a real-world,
parallel bzip2 compressor.8 We used four Java programs: cache4j, a real-world Java
object cache, driven externally by concurrent update requests, and three tests from the
IBM ConTest benchmarks [Farchi et al. 2003]: airline, bank, and 2stage. Columns 1–4
of Table I describe the test cases.

We evaluated the scalability of Symbiosis for pbzip2 and cache4j by varying the size
of their workload. For pbzip2, we compressed input files of different sizes: 80KB (small),
2.6MB (medium), and 16MB (large). For cache4j, we reran its test driver for update
loop iteration counts of 1 (small), 5 (medium), and 10 (large). In some cases, we inserted
calls to the sleep function, changing event timing and increasing the failure rate. Our
work is not targeting the orthogonal failure reproduction problem [Huang et al. 2013],
so this change does not taint our results. We ran our C/C++ experiments on an 8-core,
3.5GHz machine with 32GB of memory, running Ubuntu 10.04.4. For Java we used a
dual-core i5, 2.8GHz CPU with 8GB of memory, running OS X.

5.1. Trace Collection Efficiency

We measured the time and storage overhead of path profiling relative to native exe-
cution and the time cost of symbolic trace collection. Columns 6–10 of Table I report
the results, averaged over five trials. Symbiosis imposes a tolerable path profiling
overhead, ranging from 1.3% in pbzip2 (medium) to 25.4% in crasher. Curiously, the
runtime slowdown is smaller for real-world applications (pfscan, pbzip2, and cache4j)
than for benchmarks. The reason is that the latter programs have more basic blocks
with very few operations, making block instrumentation frequent. The space overhead

7http://www.graphviz.org.
8In our experiments, we used a C version of pbzip2 from previous work Kasikci et al. [2012].

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

http://www.graphviz.org

14:22 N. Machado et al.

Table I. Benchmarks and Performance
Column 2 shows lines of code. Column 3 shows the number of threads. Column 4 shows the number of shared
program variables. Column 5 shows the number of accesses to shared variables. Column 6 shows the overhead
of path profiling. Column 7 shows the size of the profile in bytes. Column 8 shows the symbolic execution time.
Column 9 shows the number of SMT constraints. Column 10 shows the number of unknown SMT variables.
Column 11 shows the time in seconds to solve the SMT system.

#Shared #Shared Profiling Log Symbolic #SMT #SMT SMT
Application LOC #Threads Vars. Accesses Overhead Size Time Conts. Vars. Time

C
/C

++

crasher 70 6 4 266 25.4% 458B 0.02s 22,295 400 1m2s
sbuff 151 2 5 69 16.7% 632B 0.05s 423 102 1s
bbuff 377 5 11 143 34.4% 920B 13s 2,710 239 8s

pfscan 830 5 9 74 6.6% 3.8K 1.87s 678 131 1s
pbz2 (S)

1,942 9 14
176 2.5% 1.7K 11.16s 1,361 289 1s

pbz2 (M) 367 1.3% 2.6K 36.17s 6,771 564 26s
pbz2 (L) 1,156 2.5% 9.4K 7m11s 514,548 2,866 15h15m

Ja
va

airline 108 8 2 36 22% 262B 1.30s 2,670 84 1s
bank 125 3 3 115 12.4% 788B 1.56s 8,250 197 2s

2stage 123 4 4 49 14.8% 196B 2.53s 264 88 1s
c4j (S)

2,344 4 7
28 7.3% 366B 1.64s 122 51 1s

c4j (M) 1,247 8.6% 17K 4.56s 303,626 1,810 51s
c4j (L) 1,411 9.3% 24K 4.76s 1,142,120 2,051 1h 25m

of path profiling is also low, ranging from 196B (2stage) to 24K (cache4j). CLAP [Huang
et al. 2013] showed that recording threads’ path profiles only reduces storage overheads
considerably (up to 97%!) compared to R&R (e.g., LEAP [Huang et al. 2010]). Symbiosis
enjoys this reduction as well. Symbiosis collects symbolic traces in just seconds for most
test cases. The only exception is pbzip2 (large), which took KLEE around 7 minutes.
JPF quickly produced the symbolic traces for all programs.

5.2. Constraint System Efficiency

The last three columns of Table I describe the SMT formulae Symbiosis built for each
test case. The table also reports the amount of time Symbiosis takes to solve its SMT
constraints with Z3, yielding a failing schedule. The data show that solver time is
very low (i.e., seconds) in most cases. Solver time often grows with constraint count
but not always. cache4j (large) has more than double the constraints of pbzip2 (large)
but was around 11 times faster. Figure 5 helps explain the discrepancy by showing
the composition of the SMT formulations by constraint type. pbzip2 has many locking
and read-write constraints, while cache4j has no locking although many read-write
constraints. The solution to locking constraints determines the execution’s lock order,
constraining the solution to read-write constraints. The formulation’s complexity grows
not with the count but the interaction of these constraint types.

Symbiosis’s SMT solving times are practical for debugging use. To produce a DSP,
Symbiosis requires only a trace from a single, failing execution and does not require
any changes to the code or input. Our experiments are realistic because a programmer,
when debugging, often has a bug report with a small test case that yields a short, simple
execution. The data suggest that Symbiosis handles such executions very quickly (e.g.,
pbzip2 (small), cache4j (medium)). Debugging is a relatively rare development task,
unlike compilation, which happens frequently. Giving Symbiosis minutes or hours to
help solve hard bugs (like pbzip2 (large)) is reasonable. Additionally, Symbiosis could
divide the SMT constraint system into different instances and solve them in parallel,
like CLAP, or incorporate lock ordering information, like [Bravo et al. 2013], to decrease
solver time.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

Concurrency Debugging with Differential Schedule Projections 14:23

Fig. 5. Breakdown of the SMT constraint types.

5.3. Differential Schedule Projections Effectiveness

Symbiosis produces a graphical visualization of its DSPs as a graph with specific
identifying information on nodes and edges that reflects source code lines and variables.
This information includes schedule variations and dataflow variations as well.

In this section, we are interested in assessing the effectiveness of DSPs to diagnose
concurrency failures. To this end, we first evaluate the efficacy of DSPs in isolating the
root cause of the benchmark bugs. Second, we use case studies to further illustrate how
DSPs can be used to understand and fix those bugs. Third, we investigate the impact
of using context switch reduction when generating DSPs. Finally, we present a user
study that assesses the benefits of DSPs over full failing schedules for concurrency bug
diagnosis.

5.3.1. Root-Cause Isolation Efficacy. To evaluate the efficacy of DSPs in isolating the
bug’s root cause, we compared the number of program events and dataflow edges in
the differential schedule projection against those of full, failing executions computed
by Symbiosis.

Table II summarizes our results. The most important result is that Symbiosis’s
differential schedule projections are simpler and clearer than looking at full, failing
schedules. Symbiosis reports a small fraction of the full schedule’s dataflows and pro-
gram events in its output—on average, 90% fewer events and 96% fewer dataflows. By
highlighting only the operations involved in the dataflow variations, Symbiosis focuses
the programmer on just a few events (three to six in our tests). Furthermore, all events
Symbiosis reports are part of dataflow or event orders that dictate the presence or
absence of the failure. DSPs depict those events only, simplifying debugging.

Symbiosis finds an alternate, nonfailing schedule after reordering few event pairs—
just 1 in many cases (e.g., cache4j, pbzip2). Symbiosis reorders one pair at a time,
starting from those closer in the schedule to failure, and the data show that this
usually works well. bank is an outlier—Symbiosis reordered 181 different pairs before
finding an alternate, nonfailing schedule. The bug in this case is an atomicity violation
that breaks a program invariant that is not checked until later in the execution. As a
result, Symbiosis must search many pairs, starting from the failure point, to eventually
reorder the operations that cause the atomicity violation.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

14:24 N. Machado et al.

Table II. Differential Schedule Projections
Columns 2 is the number of event pairs reordered to find a satisfiable alternate schedule (#Alt Pairs). Column 3
shows the number of events in the failing schedule (#Events in Fail Sch.), and Column 4 shows the number
of events in the corresponding differential schedule projection (#Events DSP). Column 5 shows the number of
dataflow edges in the failing schedule (#D-F in Fail Sch.), and Column 6 shows the number of dataflow variations
in the differential schedule projection (#D-F in DSP). Columns 4 and 6 show the percent change compared to
the full schedule. Column 7 shows the number of operations involved in the dataflow variations (#Ops to Grok).
Columns 8 and 9 show whether the differential schedule projection explains the failure, and whether it directly
points to a fix of the underlying bug in the code.

#Alt. #Events in #Events in #D-F in #D-F in Ops. Finds
Application Pairs Fail Sch. DSP (�%) Fail Sch. DSP (�%) to Grok Explanatory? Fix?

crasher 27 287 9 (↓97) 107 1 (↓99) 3 Y Y
sbuff 9 73 15 (↓80) 28 1 (↓96) 3 Y Y
bbuff 3 157 19 (↓88) 79 1 (↓99) 3 Y Y
pfscan 5 93 16 (↓83) 32 1 (↓97) 3 Y Y
pbz2 (S) 1 206 4 (↓98) 29 1 (↓97) 3

Y Npbz2 (M) 1 397 3 (↓99) 82 1 (↓99) 3
pbz2 (L) 2 1223 168 (↓86) 264 2 (↓>99) 5

airline 1 58 6 (↓90) 25 2 (↓92) 6 Y Y
bank 181 124 31 (↓75) 72 2 (↓97) 5 Y Y
2stage 14 60 3 (↓95) 27 1 (↓96) 3 Y Y
c4j (S) 1 39 12 (↓69) 11 2 (↓82) 6

Y Nc4j (M) 1 1257 10 (↓>99) 552 1 (↓>99) 3
c4j (L) 1 1422 5 (↓>99) 628 1 (↓>99) 3

Note that even if a failure occurs only in the presence of a particular chain of event
orderings, it suffices to reorder any pair in the chain to prevent that failure. This
phenomenon is called the Avoidance-Testing Duality and is detailed in previous work
[Lucia and Ceze 2013].

5.3.2. Differential Schedule Projections Case Studies. This section uses case studies to il-
lustrate how differential schedule projections focus on relevant operations and help
understand each failure.

stringbuffer is an atomicity violation first studied in Flanagan and Qadeer [2003]
and its DSP is depicted in Figure 6(a). T1 reads the length of the string buffer, sb,
while T2 modifies it. When T2 erases characters, the value T1 read becomes stale and
T1’s assertion fails. The DSP shows that the cause of the failure is T2’s second write,
interleaving T1’s accesses to sb.count. Moreover, Symbiosis’s alternate schedule suggests
that, for T1, the write on value len and the verification of the assertion should execute
atomically in order to avoid the failure. For this case, this is actually a valid bug fix.

bbuf contains producer/consumer threads that put/get items into/from a shared buffer
for a given number of times. This program has an atomicity violation that allows con-
sumer threads to get items from the buffer, even when it is empty. Figure 6(b) illustrates
this failure: after getting an item from the buffer, consumer thread T1 prepares to get
another one, but first checks whether the buffer is empty (i.e., if(bbuf->head!=bbuf->
rear)). As the condition is true, T1 proceeds to consume the item, but it is interleaved
by T2 in the meantime, which consumes the item first and updates the value of bbuf->
head. This causes T1 to later violate the assertion that enforces the buffer invariant.
The alternate schedule in Figure 6(b) shows that executing atomically the two blocks
that, respectively, check the conditional clause and the assertion prevents the failure.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

Concurrency Debugging with Differential Schedule Projections 14:25

Fig. 6. Summary of Symbiosis’s output for some of the test cases. Arrows depict dataflows and dashed boxes
depict regions that Symbiosis suggests to be executed atomically.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

14:26 N. Machado et al.

pbzip2 is an order violation studied in Jalbert and Sen [2010]. Figure 6(c) shows
Symbiosis’s DSP that illustrates the failure’s cause. T1, the producer thread, communi-
cates with T2 the consumer thread via the shared queue, fifo. If T1 sets the fifo pointer to
null while the consumer thread is still using it, then T2’s assertion fails. The alternate
schedule in Figure 6(b) explains the failure because reordering the assignment of null to
fifo after the assertion prevents the failure. The DSP is, thus, useful for understanding
the failure. However, to fix the code, the programmer must order the assertion with the
null assignment using a join statement. The DSP does not provide this suggestion, so,
despite helping explain the failure, it does not completely reveal how to fix the bug.

bank is a benchmark in which multiple threads update a shared bank balance. It has
an atomicity violation that leads to a lost update. Figure 6(d) shows the DSP for the
failure: T1 and T2 read the same initial value of BankTotal and subsequently write the
same updated value, rather than either seeing the result of the other’s update. The
final assertion fails, because accountsTotal, the sum of per-account balances, is not equal
to BankTotal. The Figure shows that Symbiosis’s DSP correctly explains the failure and
shows that eliminating the interleaving of updates to BankTotal prevents the failure. It
is noteworthy that in this example the atomicity violation is not fail-stop and happens
in the middle of the trace. Scanning the trace to uncover the root cause would be
difficult, but the DSP pinpoints the failure’s cause precisely.

cache4j has a data race that leads to an uncaught exception when one thread is
in a try block and another interrupts it with the library interrupt() function [Sen
2008]. JPF doesn’t support exception replay, so we slightly modified its code, preserving
the original behavior, by replacing the exception with an assertion about a shared
variable. Figure 6(e) shows that in our version of the code, inTryBlock indicates whether
a thread is inside a try-catch block, the assertion inTryBlock == true replaces the
interrupt() call. The program fails when T1 is interrupted outside a try block as in
the original code. The schedule variations reported in the DSP explain the cause of
failure—if the entry to the try block (i.e., inTryBlock = true) precedes the assertion,
execution succeeds; if not, the assertion fails. The involvement of exceptions makes
the fix for this bug somewhat more complicated than simply adding atomicity, but the
understanding that the DSP provides points to the right part of the code and illustrates
the correct behavior.

5.3.3. Impact of Context Switch Reduction. We evaluate the impact of the CSR algorithm
presented in Section 3.7. To this end, we ran Symbiosis with and without CSR and
compared: (i) the number of context switches of the failing schedule generated, (ii) the
number of event pairs reordered to find a satisfiable alternate schedule, and (iii) the
number events and dataflows in the DSPs produced.

Table III reports the results of our experiments. The most prominent observation is
that our CSR algorithm is indeed effective in reducing the number of context switches
(the failing schedules have 63% less context switches, on average). Table III also shows
that, when using CSR, Symbiosis is able to find a satisfiable alternate schedule with
less event pair reorderings in three of the test cases (crasher, pfscan, and bank).

On the other hand, DSPs produced by Symbiosis with CSR tend to have slightly more
events than produced without CSR. The reason is because CSR produces schedules with
more coarse-grained thread segments (i.e., comprising more events) and our current
DSP implementation does not eliminate events from the same thread segment that
occur in between two events involved in dataflow variations.

Another observation worth noting from Table III is that DSPs with CSR do not
exhibit any reductions in terms of dataflow variations with respect to DSPs without
CSR. The reason is because the feasible alternate schedules produced by Symbiosis are

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

Concurrency Debugging with Differential Schedule Projections 14:27

Table III. Context Switch Reduction Efficacy
Column #CS indicates the number of schedule context switches; #Alt Pairs is the number of event pairs reordered
to find a satisfiable alternate schedule; #Events in DSP and #D-F in DSP show, respectively, the number of
events and number of dataflow in the corresponding differential schedule projection. Time CSR indicates the total
amount of time required to perform the context switch reduction algorithm. Shaded cells indicate the cases where
Symbiosis achieves better results with CSR than without.

Without CSR With CSR
#Alt. #Events #D-F #Alt. #Events #D-F Time CSR

Application #CS Pairs in DSP in DSP #CS Pairs in DSP in DSP (Solver Calls)

crasher 104 27 9 1 34 21 9 1 19m 33s (166)
sbuff 7 9 15 1 4 9 15 1 2s (14)
bbuff 35 3 19 1 10 6 19 1 14s (40)
pfscan 23 5 16 1 9 3 16 1 9s (32)
pbz2 (S) 74 1 4 1 14 1 7 1 14s (59)
pbz2 (M) 151 1 4 1 22 1 7 1 4m 58s (163)
pbz2 (L) 292 1 4 1 36 1 7 1 5h 11m (353)

airline 28 1 6 2 8 1 8 2 5s (33)
bank 6 181 31 2 4 154 46 2 6s (9)
2stage 16 14 3 1 4 14 6 1 2s (15)
c4j (S) 4 1 12 2 4 1 12 2 <1s (2)
c4j (M) 21 1 10 1 7 1 10 1 6m 50s (25)
c4j (L) 29 1 5 1 7 1 5 1 16m 19s (29)

mainly the result of reordering a event from a thread (typically the one corresponding
to the failure condition) with an event from another thread that is close in the schedule.
Hence, most dataflows do not change after reordering the event pair, even if the failing
schedule has unnecessary context switches.

Regarding the amount of time required to perform CSR (shown in the last column
of Table III), it is possible to see that Symbiosis took only a couple of seconds for most
cases. However, for pbzip2 (L) this time exceed 5 hours. The reason is because the failing
schedule for this program contained a significant number of context switches, which
required the CSR to invoke the solver several times (353 to be precise). Moreover, since
the constraint model for pbzip2 (L) is also the one with most constraints, each solver
call becomes particularly costly.

In conclusion, despite CSR being effective in reducing the number of context switches
in a failing schedule, our experiments show that this does not imply a reduction in the
number of events and dataflow variations reported in the DSPs. Furthermore, since
performing CSR can be costly for some programs, we argue that computing the DSP
with the original failing schedule should probably be the most cost-effective approach
for the majority of the cases.

5.3.4. User Study. To assess how useful for debugging a DSP is, compared to full failing
schedule, we conducted a user study.

Participants. We recruited 48 participants, including 21 students (6 undergraduate,
9 masters, 6 doctoral) from Instituto Superior Técnico, 24 masters students from Uni-
versity of Pennsylvania, 1 doctoral student from Carnegie Mellon University, and 2
software engineers (with 3 years of experience in the industry), to individually find the
root cause of a given concurrency bug.

Study Design. The participants were randomly divided into two groups according to
the type of debugging aid they were going to use in the experiment: the full schedule
of a failing execution or the DSP for the same failing schedule.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

14:28 N. Machado et al.

Fifteen participants took the study in a proctored session. The remaining 33 partic-
ipants received the study by email and returned it by email on completion.

Prior to initiating the experiment, each participant had access to a tutorial example
that explained how the respective debugging aid could be used to find the root cause of
a concurrency bug in a toy program. The goal of the tutorial was to guarantee that each
participant knew how to read and understand its debugging aid (i.e., the full failing
schedule or the DSP) beforehand.

For the experiment, we provided each participant with the source code of a multi-
threaded program with a concurrency bug. This bug was a simplified version of the
stringbuffer error used in the previous sections and consisted of an atomicity violation
that caused the failure of an assertion (the assertion included two conditions of which
only one fails). In addition, each participant was given its corresponding debugging
aid: the full schedule of a failing execution or the DSP for the same failing schedule.

The experiment consisted of analyzing the debugging aid and the program’s source
code and answering a short survey with five questions. First, we asked which conjunct of
the assertion condition was violated (allowing us to screen for wrong answers). Second,
we asked the participant to write up to three sentences describing what caused the
assertion to fail. Then, we asked the participant to rate, on a scale of 1 to 5, the
difficulty of diagnosing the concurrency bug, as well as their experience in debugging
multithreaded programs. Finally, we asked the participant to report the time they took
to find the bug by choosing one of four intervals of time: 0–4min, 5–9min, 10–14min,
and ≥15min.

Results. We analyze these results according to three different criteria, which are
discussed below.

—Correctness. Do the participants correctly identified the root cause of the assertion
violation? Does the type of debugging aid have an impact in the success rate?

—Bug Difficulty. Does the type of debugging aid have an impact in the self-reported
bug difficulty?

—Diagnosis Time. Does the type of debugging aid have an impact in the time required
to diagnose the bug? Are there other factors that significantly influence the diagnosis
time (e.g., the participant’s debugging experience)?

To support the conclusions of the user study, we performed a statistical analysis over
the obtained data. Concretely, for each criterion, we started by computing the correla-
tion coefficient between the variables being analyzed (e.g., identifying the correct root
cause of the bug and using DSP as debugging aid). For the cases where the correlation
coefficient indicated a statistically significant relationship between the variables, we
also performed a t-test over the samples to further support that claim.

Correctness. We considered that participants had a correct answer when they cor-
rectly identified the failing conjunct in the assertion condition and provided a satisfac-
tory explanation to the bug’s root cause.

From the 48 participants, 38 answered correctly. In particular, the participants that
received the DSP show a slightly higher percentage of correct answers in comparison
to those who received the full failing schedule (74% against 71%, respectively).

To statistically evaluate the relationship between the type of debugging aid and
the correctness of the answer, we calculated the point-biserial correlation coefficient9

9We opted for using the point-biserial correlation coefficient to compute the correlation because the debugging
aid variable is naturally dichotomous, that is, it corresponds to either using the DSP or the full failing
schedule. The variable representing the correctness of the answer is also naturally dichotomous, as the
answer can only be considered correct or incorrect. Note that the correlation coefficient varies between −1

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

Concurrency Debugging with Differential Schedule Projections 14:29

Fig. 7. User Study Results (considering solely correct answers). (a) Impact of the type of debugging aid in
self-reported bug difficulty (1 means very easy, 5 means very hard); (b) impact of the type of debugging aid
(full schedule/DSP) in diagnosis time.

between these two variables. We considered the variable debugging aid to have value
0 for the DSP and 1 for the full failing schedule. For the correctness of the answer,
we considered 0 to indicate that the response is incorrect and 1 to indicate that it is
correct.

The correlation value between the debugging aid variable and the correctness of the
answer is −0.030, which means that there is no statistically significant correlation
between the two variables. The negative value of the coefficient shows that there is a
slight trend for people using the DSP to answer correctly more often than people with
full failing schedules though.

Given that the majority of the participants successfully found the root cause of the
bug, we believe that, for (somewhat) simple concurrency bugs, having any kind of
debugging aid is indeed helpful for debugging.

Bug Difficulty. We are interested in understanding whether participants doing the
experiment with DSPs would find the bug easier to debug. Figure 7(a) depicts the values
for bug difficulty reported by the participants according to their type of debugging aid.
From the figure, it is not possible to extract a clear trend, although we can see that no
participant using DSPs rated the bug above 3, whereas two participants with the full
schedule classified the bug as 4.

We computed the correlation coefficient for these two variables and obtained the
value 0.010, which indicates there is indeed no statistically significant correlation
between the type of debugging aid and the bug difficulty. However, the value of the
coefficient points out a slim positive relationship between using the full schedule and
finding the bug harder to diagnose.

Similarly, the correlation coefficient for the participants’ experience and the bug
difficulty (which has value −0.048) shows that there is no statistically significant
correlation between these two variables, although the tendency for this case is that
participants with more experience tend to find the bug easier than less experienced
participants.

Diagnosis Time. Figure 7(b) reports the participants’ diagnosis time according to the
type of debugging aid (full schedule or DSP) they received. The figure shows that par-
ticipants that received the DSP tended to diagnose the bug in less time. To statistically

and 1, where −1 (1) indicates a very strong negative (positive) correlation between the variables, and 0
indicates that there is no correlation at all between the variables.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

14:30 N. Machado et al.

evaluate this claim, we calculated the point-biserial correlation coefficient between type
of debugging aid and the amount of time to diagnose the bug. Once more, we considered
the variable debugging aid to have value 0 for the DSP and 1 for the full failing schedule.

The correlation value between the debugging aid variable and diagnosis time is
0.416, which means that, with a 99% confidence level, there is a significant positive re-
lationship between these two variables. This means that using the full failing schedule
is correlated to a greater amount of time to find the bug. In other words, the correlation
supports the claim that using a DSP allows for faster bug diagnosis, as we expected.

We also performed a Welch’s t-test to test whether the means of our two samples (the
DSP sample vs. the full schedule sample) differ statistically significantly. A significant
result means that the sampled means correspond to different underlying populations,
and, as the data show, that the DSP sample mean is less than the failing schedule
sample mean. Let M0 be the mean of the diagnosis times for the DSP tests and M1
the mean of the diagnosis times for the full failing schedule tests. We consider the null
hypothesis to be “M0 = M1,” and we test whether to reject the hypothesis.

The t-test’s two-tailed value of tp with 24 degrees of freedom10 and a 95% confidence
level (p < 0.05) is 2.064. Evaluating the Welsh’s t-test, t = −2.281. Since 2.064 <
| − 2.281| and, consequently, tp < t, we can reject the null hypothesis and conclude
that M0 	= M1. This result shows that there is a statistically significant decrease in
debugging time using a DSP, compared to using a failing schedule.

Finally, we computed the Pearson’s correlation coefficient between participants’ self-
reported experience in debugging multithreaded programs and the diagnosis time, in
order to assess whether the experience was also a significant factor in the diagnosis
time. The correlation coefficient for this case showed that there was only an extremely
weak, negative relationship between debugging experience and diagnosis time. This
means that participants who reported higher experience tend to find the bug slightly
faster than participants with less experience, although the difference is not statistically
significant.
In summary, regarding the benefits of DSPs over full failing schedules, the main find-
ings of our user study show that:

—Correctness. There is a slim correlation between using DSPs and a correct bug diag-
nosis, although it is not statistically relevant.

—Bug Difficulty. There is a slight correlation between using DSPs and finding the bug
easier to debug, although it is not statistically relevant.

—Diagnosis Time. There is a statistically significant correlation between using DSPs
and a faster diagnosis time.

Thus, in our study, all users had a similar perception of the difficulty of the bug at
hand (which is not surprising, given that the intrinsic “hardness” of a bug is somehow
independent of the tools used to find it). Furthermore, in both groups, approximately
the same percentage of users were able to found the correct answer (which suggests
that both groups had a similar ability/experience to recognize the right answer). Still,
the group using DSPs was able to perform the diagnosis faster, which supports our
claim that Symbiosis can reduce the debugging time.

Threats to validity. To simplify the study, we designed the whole experiment to be
supported solely by textual material. As such, we crafted the experiment’s concurrency
bug in such a way that it could be solved in a practical 20 minutes by a person not
familiar with the program’s source code. This fact might have diminished the debugging

10The number of degrees of freedom was calculated using the Welch-Satterthwaite equation for the Welch’s
t-test.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

Concurrency Debugging with Differential Schedule Projections 14:31

time difference between using a DSP and a full schedule because all participants,
regardless of debugging aid, may have taken substantial time to understand the code.
We expect that the observed difference in debugging time would be greater if the
participant was already familiar with the code, eliminating the fixed time cost for
understanding the code.

The diagnosis time for the participants in the offsite (email) setting was self-reported,
which might be subject to some inaccuracies. Despite that, we observed that the results
from the offsite setting are consistent with those onsite (the proctored session).

Since the self-reported debugging experience was not measured using exact metrics,
it might be biased towards each participant’s self-perception of what it means to be
an expert in debugging multithreaded programs. In fact, the values obtained do not
always match with education level of the participants (for instance, there was a doctoral
student who reported an experience level of 1 and an undergraduate who reported an
experience level of 3). To mitigate this threat, we computed the correlation coefficients
for the diagnosis time and the bug difficulty using the education level instead of the
self-reported experience. We observed similar results and, thus, concluded that self-
reported experience was a valid factor to take into account.

6. RELATED WORK

In addition to the work discussed in Section 2, a large body of prior research has been
devoted to debugging of multithreaded programs. This section overviews some of the
previous efforts most related to Symbiosis.
Record and Replay. Record and Replay (R&R) techniques are also relevant to
our work. These techniques fall into three categories: order-based, search-based, and
execution-based.

Order-based techniques record the order of certain events during an execution and
then replay them in the same order [Huang et al. 2010; Yang et al. 2011; Zhou et al.
2012; Jiang et al. 2014]. Search-based techniques only trace partial information at
runtime (e.g., record solely the order of write operations [Zhou et al. 2012]) and then
search the space of executions for one that conforms with the observed events [Zamfir
and Candea 2010a; Park et al. 2009; Altekar and Stoica 2009; Machado et al. 2012].
Execution-based techniques restrict all executions of a program so, for a given input,
the program’s behavior is constrained to be deterministic from one run to the next
[Berger et al. 2009; Liu et al. 2011; Devietti et al. 2009; Bergan et al. 2010].

Symbiosis is mostly orthogonal to the techniques above but shares some important
characteristics. Like R&R techniques, given a concrete trace, Symbiosis can produce
a failing schedule that conforms to those events, reproducing the failure. Symbiosis’s
precise differential schedule projections and broader applicability to debugging and
failure avoidance make it novel in contrast to R&R techniques. Unlike deterministic
execution techniques, Symbiosis does not aim to perturb production runs, obviating
the risk in doing so.
Concurrency Debugging and Failure Avoidance. Several techniques have been
proposed over the past few years to identify the root cause of a concurrency bug, show
diagnose information to help the programmer fix it, or to avoid it in future executions.
We discuss some of the most relevant research efforts on this matter in the following.

In the particular case of data race detection, Portend [Kasikci et al. 2012] and the
work by Narayanasamy et al. [2007] provide the developer with information regarding
which data races reported by a data race detector are harmful or benign. This way,
developers can focus their efforts on fixing the racy accesses that can actually lead to
failures. Symbiosis can also help diagnose and fix harmful data races in the presence
of failing schedules containing this kind of concurrency bug.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

14:32 N. Machado et al.

Interleaving pattern-matching [Park et al. 2010; Lucia et al. 2010; Lu et al. 2006]
techniques search an execution, dynamically or by reviewing a log, for problematic pat-
terns of memory accesses. Although often effective, these solutions have the drawback
of missing bugs that not fit the known patterns. Unlike these techniques, Symbiosis is
not limited to searching for known patterns.

Subschedule search solutions, in turn, are general and not limited to specific pat-
terns [Zhang et al. 2011; Lucia and Ceze 2013; Shi et al. 2010]. Unfortunately, the
space of all of an execution’s possible subschedules can be large. For some prior tech-
niques, considering different subschedules requires multiple additional program execu-
tions, combined with statistical analysis to make search feasible [Arumuga Nainar and
Liblit 2010; Jin et al. 2010; Kasikci et al. 2015]. Symbiosis requires only a single, failing
execution; does not rely on statistical reasoning; and produces precise results. Mechan-
ically, these techniques differ in that none uses SMT to search and none produces a
differential view of its result, like DSPs.

PBI [Arulraj et al. 2013] and LBRA/LCRA [Arulraj et al. 2014] rely on custom hard-
ware extensions, such as performance counters and short-term memory, to diagnose
production-run failures caused by sequential and concurrency bugs with low overhead.
However, these techniques also require sampling several production runs to be effective
and only work well in the presence of bugs where the root cause is close to the failure.

Triage [Tucek et al. 2007] uses dynamic slicing to diagnose failures at the user’s
site, which obviates privacy concerns. Despite that, it has limited support for concur-
rency bugs, being able to provide root cause isolation only for multithreaded programs
running on uniprocessors.
Root-Cause Isolation with UNSAT Cores. BugAssist [Jose and Majumdar 2011]
pioneered the use of UNSAT cores to isolate errors in software programs. BugAssist
supports only sequential programs and requires several failing test cases, whereas
Symbiosis is aimed at diagnosing concurrency bugs, even in the presence of a single
failing schedule.

Contemporaneously to Symbiosis, ConcBugAssist [Khoshnood et al. 2015] extended
BugAssist to handle bugs in multithreaded programs. ConcBugAssist also relies on the
UNSAT core feature to compute the subset of constraints that comprise the root cause
of a concurrency bug. However, instead of producing DSPs, ConcBugAssist attempts
to generate automated repairs by casting the binate covering problem as a constraint
formulation. This process has the drawback of requiring model checking the entire
program and compute all possible schedules that prevent the failure, which is hard to
do in practice.
Testing Approaches. Finally, other techniques systematically explore the space of
possible program executions to generate test cases. Java Path Finder [Visser et al.
2004], KLEE [Cadar et al. 2008], Pex [Tillmann and De Halleux 2008], and Mimic
[Zuddas et al. 2014] use symbolic program execution to search for an input that induces
a failing path constraint. Chess [Musuvathi et al. 2008], PCT [Burckhardt et al. 2010],
and Concurrit [Elmas et al. 2013] run a program for a particular input and rely on an
augmented scheduler to push the execution to a potential failure. On the other hand,
con2colic testing [Farzan et al. 2013], CUTE [Sen et al. 2005], and DART [Godefroid
et al. 2005] employ concolic execution (i.e., concrete + symbolic execution), which is a
technique that uses concrete input values to simplify complex symbolic constraints.
In particular, CUTE and DART focus on the generation of unit tests for sequential
programs, whereas con2colic testing uses heuristics to explore the space of possible
thread interleavings and execution paths to generate tests for multithreaded programs.

These techniques reveal only full, failing executions or buggy inputs and provide
neither root-cause information nor differential schedule projections. In turn, Choi and

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

Concurrency Debugging with Differential Schedule Projections 14:33

Zeller [2002] also shares our goal of narrowing down the difference between successful
and failing schedules to pinpoint a bug. This technique relies on random jitter and
requires reexecuting the program, whereas Symbiosis only operates on SMT formu-
lations, which are sound and complete and, thus, provide a formal guarantee that
alternate schedules are nonfailing.

7. CONCLUSIONS AND FUTURE WORK

This article described Symbiosis, a new technique that gets to the bottom of concur-
rency bugs. Symbiosis reports focused subschedules, eliminating the need for a pro-
grammer or automated debugging tool to search through an entire execution for the
bug’s root cause. Symbiosis also reports novel alternate, nonfailing schedules, which
help illustrate why the root cause is the root cause and how to avoid failures. Our novel
differential schedule projection approach links the root cause and alternate subsched-
ules to dataflow information, giving the programmer deeper insight into the bug’s cause
than path information alone. An essential part of Symbiosis’s mechanism is the use of
an SMT solver and, in particular, its ability to report the part of a formula that makes
it unsatisfiable. Symbiosis carefully constructs a deliberately unsatisfiable formula so
the conflicting part of that formula is the bug’s root cause. We built two Symbiosis
prototypes, one for C/C++ and one for Java. We used them to show that, for a variety of
real-world and benchmark programs from the debugging literature, Symbiosis isolates
bugs’ root causes and providing differential schedule projections that show how to fix
those root causes.

As future research directions, we plan to extend Symbiosis to support the diagnosis
of concurrency bugs that result from schedule-sensitive branches [Huang and Rauch-
werger 2015]. Additionally, we also intend to extend Symbiosis’s constraint-based ap-
proach to expose new concurrency bugs from correct production run traces rather than
just isolating the root cause of a failing schedule.

ACKNOWLEDGMENTS

We thank both PLDI’15 and TOSEM anonymous reviewers for their valuable and constructive feedback. We
also thank Baris Kasikci for kindly sharing the C version of pbzip2 with us. Finally, a special thank you to
all the participants for their help with the user study.

REFERENCES

Gautam Altekar and Ion Stoica. 2009. ODR: Output-deterministic replay for multicore debugging. In Pro-
ceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles (SOSP’09). ACM, New
York, NY, 193–206. DOI:http://dx.doi.org/10.1145/1629575.1629594

Joy Arulraj, Po-Chun Chang, Guoliang Jin, and Shan Lu. 2013. Production-run software failure diagnosis
via hardware performance counters. In Proceedings of the Eighteenth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS’13). ACM, New York,
NY, 101–112. DOI:http://dx.doi.org/10.1145/2451116.2451128

Joy Arulraj, Guoliang Jin, and Shan Lu. 2014. Leveraging the short-term memory of hardware to diagnose
production-run software failures. In Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS’14). ACM, New York, NY, 207–
222. DOI:http://dx.doi.org/10.1145/2541940.2541973

Piramanayagam Arumuga Nainar and Ben Liblit. 2010. Adaptive bug isolation. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 1 (ICSE’10). ACM, New York,
NY, 255–264. DOI:http://dx.doi.org/10.1145/1806799.1806839

Thomas Ball and James R. Larus. 1994. Optimally profiling and tracing programs. ACM Trans. Program.
Lang. Syst. 16, 4 (July 1994), 1319–1360. DOI:http://dx.doi.org/10.1145/183432.183527

Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan Grossman. 2010. CoreDet: A compiler
and runtime system for deterministic multithreaded execution. In Proceedings of the 15th Edition of
ASPLOS on Architectural Support for Programming Languages and Operating Systems (ASPLOS XV).
ACM, New York, NY, 53–64. DOI:http://dx.doi.org/10.1145/1736020.1736029

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

http://dx.doi.org/10.1145/1629575.1629594
http://dx.doi.org/10.1145/2451116.2451128
http://dx.doi.org/10.1145/2541940.2541973
http://dx.doi.org/10.1145/1806799.1806839
http://dx.doi.org/10.1145/183432.183527
http://dx.doi.org/10.1145/1736020.1736029

14:34 N. Machado et al.

Emery D. Berger, Ting Yang, Tongping Liu, and Gene Novark. 2009. Grace: Safe multithreaded programming
for C/C++. In Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented Programming
Systems Languages and Applications (OOPSLA’09). ACM, New York, NY, 81–96. DOI:http://dx.doi.org/
10.1145/1640089.1640096

Manuel Bravo, Nuno Machado, Paolo Romano, and Luı́s Rodrigues. 2013. Towards effective and efficient
search-based deterministic replay. In Proceedings of the 9th Workshop on Hot Topics in Dependable
Systems (HotDep’13). ACM, New York, NY, Article 10, 6 pages.

Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Nagarakatte. 2010. A ran-
domized scheduler with probabilistic guarantees of finding bugs. In Proceedings of the 15th Edition of
ASPLOS on Architectural Support for Programming Languages and Operating Systems (ASPLOS XV).
ACM, New York, NY, 167–178. DOI:http://dx.doi.org/10.1145/1736020.1736040

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation (OSDI’08). USENIX Association, Berkeley, CA, 209–224.
http://dl.acm.org/citation.cfm?id=1855741.1855756

Jong-Deok Choi and Andreas Zeller. 2002. Isolating failure-inducing thread schedules. In Proceedings of
the 2002 ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA’02). ACM,
New York, NY, 210–220. DOI:http://dx.doi.org/10.1145/566172.566211

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In Proceedings of the
Theory and Practice of Software, 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, 337–340.
http://dl.acm.org/citation.cfm?id=1792734.1792766

Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin. 2009. DMP: Deterministic shared mem-
ory multiprocessing. In Proceedings of the 14th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS XIV). ACM, New York, NY, 85–96.
DOI:http://dx.doi.org/10.1145/1508244.1508255

Tayfun Elmas, Jacob Burnim, George Necula, and Koushik Sen. 2013. CONCURRIT: A domain specific
language for reproducing concurrency bugs. In Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’13). ACM, New York, NY, 153–164.
DOI:http://dx.doi.org/10.1145/2491956.2462162

Moshe Emmer, Zurab Khasidashvili, Konstantin Korovin, and Andrei Voronkov. 2010. Encoding industrial
hardware verification problems into effectively propositional logic. In Proceedings of the 2010 Confer-
ence on Formal Methods in Computer-Aided Design (FMCAD’10). FMCAD Inc, Austin, TX, 137–144.
http://dl.acm.org/citation.cfm?id=1998496.1998522

Dawson Engler and Ken Ashcraft. 2003. RacerX: Effective, static detection of race conditions and deadlocks.
In Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles (SOSP’03). ACM,
New York, NY, 237–252. DOI:http://dx.doi.org/10.1145/945445.945468

Eitan Farchi, Yarden Nir, and Shmuel Ur. 2003. Concurrent bug patterns and how to test them. In Proceedings
of the 17th International Symposium on Parallel and Distributed Processing (IPDPS’03). IEEE Computer
Society, Washington, DC, 286–293.

Azadeh Farzan, Andreas Holzer, Niloofar Razavi, and Helmut Veith. 2013. Con2Colic testing. In Proceedings
of the 2013 9th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2013). ACM, New
York, NY, 37–47. DOI:http://dx.doi.org/10.1145/2491411.2491453

Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: Efficient and precise dynamic race detection. In
Proceedings of the 30th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI’09). ACM, New York, NY, 121–133. DOI:http://dx.doi.org/10.1145/1542476.1542490

Cormac Flanagan, Stephen N. Freund, and Jaeheon Yi. 2008. Velodrome: A sound and complete dynamic
atomicity checker for multithreaded programs. In Proceedings of the 29th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’08). ACM, New York, NY, 293–303.
DOI:http://dx.doi.org/10.1145/1375581.1375618

Cormac Flanagan and Shaz Qadeer. 2003. A type and effect system for atomicity. In Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Implementation (PLDI’03). ACM,
New York, NY, 338–349. DOI:http://dx.doi.org/10.1145/781131.781169

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed automated random testing. In Pro-
ceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’05). ACM, New York, NY, 213–223. DOI:http://dx.doi.org/10.1145/1065010.1065036

Richard L. Halpert, Christopher J. F. Pickett, and Clark Verbrugge. 2007. Component-based lock allocation.
In Proceedings of the 16th International Conference on Parallel Architecture and Compilation Tech-
niques (PACT’07). IEEE Computer Society, Washington, DC, 353–364. DOI:http://dx.doi.org/10.1109/
PACT.2007.23

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

http://dx.doi.org/ ignorespaces 10.1145/1640089.1640096
http://dx.doi.org/ ignorespaces 10.1145/1640089.1640096
http://dx.doi.org/10.1145/1736020.1736040
http://dl.acm.org/citation.cfm?id$=$1855741.1855756
http://dx.doi.org/10.1145/566172.566211
http://dl.acm.org/citation.cfm?id$=$1792734.1792766
http://dx.doi.org/10.1145/1508244.1508255
http://dx.doi.org/10.1145/2491956.2462162
http://dl.acm.org/citation.cfm?id$=$1998496.1998522
http://dx.doi.org/10.1145/945445.945468
http://dx.doi.org/10.1145/2491411.2491453
http://dx.doi.org/10.1145/1542476.1542490
http://dx.doi.org/10.1145/1375581.1375618
http://dx.doi.org/10.1145/781131.781169
http://dx.doi.org/10.1145/1065010.1065036
http://dx.doi.org/10.1109/ ignorespaces PACT.2007.23
http://dx.doi.org/10.1109/ ignorespaces PACT.2007.23

Concurrency Debugging with Differential Schedule Projections 14:35

Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12, 3 (July 1990), 463–492. DOI:http://dx.doi.org/10.1145/
78969.78972

Jeff Huang, Peng Liu, and Charles Zhang. 2010. LEAP: Lightweight deterministic multiprocessor replay
of concurrent java programs. In Proceedings of the 18th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE’10). ACM, New York, NY, 207–216. DOI:http://dx.doi.org/
10.1145/1882291.1882323

Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. 2014. Maximal sound predictive race detection
with control flow abstraction. In Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’14). ACM, New York, NY, 337–348. DOI:http://dx.doi.org/
10.1145/2594291.2594315

Jeff Huang and Lawrence Rauchwerger. 2015. Finding schedule-sensitive branches. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015). ACM, New York,
NY, 439–449. DOI:http://dx.doi.org/10.1145/2786805.2786840

Jeff Huang and Charles Zhang. 2011. An efficient static trace simplification technique for debugging con-
current programs. In Proceedings of the 18th International Conference on Static Analysis (SAS’11).
Springer-Verlag, Berlin, 163–179. http://dl.acm.org/citation.cfm?id=2041552.2041567

Jeff Huang, Charles Zhang, and Julian Dolby. 2013. CLAP: Recording local executions to reproduce con-
currency failures. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’13). ACM, New York, NY, 141–152. DOI:http://dx.doi.org/10.1145/
2491956.2462167

Nicholas Jalbert and Koushik Sen. 2010. A trace simplification technique for effective debugging of con-
current programs. In Proceedings of the 18th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (FSE’10). ACM, New York, NY, 57–66. DOI:http://dx.doi.org/10.1145/
1882291.1882302

Yanyan Jiang, Tianxiao Gu, Chang Xu, Xiaoxing Ma, and Jian Lu. 2014. CARE: Cache guided deterministic
replay for concurrent java programs. In Proceedings of the 36th International Conference on Software
Engineering (ICSE’14). ACM, New York, NY, 457–467. DOI:http://dx.doi.org/10.1145/2568225.2568236

Guoliang Jin, Aditya Thakur, Ben Liblit, and Shan Lu. 2010. Instrumentation and sampling strategies for
cooperative concurrency bug isolation. In Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications (OOPSLA’10). ACM, New York, NY, 241–
255. DOI:http://dx.doi.org/10.1145/1869459.1869481

Manu Jose and Rupak Majumdar. 2011. Cause clue clauses: Error localization using maximum satisfiability.
In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI’11). ACM, New York, NY, 437–446. DOI:http://dx.doi.org/10.1145/1993498.1993550

Baris Kasikci, Benjamin Schubert, Cristiano Pereira, Gilles Pokam, and George Candea. 2015. Failure
sketching: A technique for automated root cause diagnosis of in-production failures. In Proceedings
of the 25th Symposium on Operating Systems Principles (SOSP’15). ACM, New York, NY, 344–360.
DOI:http://dx.doi.org/10.1145/2815400.2815412

Baris Kasikci, Cristian Zamfir, and George Candea. 2012. Data races vs. data race bugs: Telling the difference
with portend. In Proceedings of the Seventeenth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS XVII). ACM, New York, NY, 185–198.
DOI:http://dx.doi.org/10.1145/2150976.2150997

Sepideh Khoshnood, Markus Kusano, and Chao Wang. 2015. ConcBugAssist: Constraint solving for diagnosis
and repair of concurrency bugs. In Proceedings of the 2015 International Symposium on Software Testing
and Analysis (ISSTA’15). ACM, New York, NY, 165–176. DOI:http://dx.doi.org/10.1145/2771783.2771798

James C. King. 1976. Symbolic execution and program testing. Commun. ACM 19, 7 (July 1976), 385–394.
DOI:http://dx.doi.org/10.1145/360248.360252

Shuvendu Lahiri and Shaz Qadeer. 2008. Back to the future: Revisiting precise program verification using
SMT solvers. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’08). ACM, New York, NY, 171–182. DOI:http://dx.doi.org/10.1145/
1328438.1328461

L. Lamport. 1979. How to make a multiprocessor computer that correctly executes multiprocess programs.
IEEE Trans. Comput. 28, 9 (Sept. 1979), 690–691. DOI:http://dx.doi.org/10.1109/TC.1979.1675439

Tongping Liu, Charlie Curtsinger, and Emery D. Berger. 2011. Dthreads: Efficient deterministic multithread-
ing. In Proceedings of the 23rd ACM Symposium on Operating Systems Principles (SOSP’11). ACM, New
York, NY, 327–336. DOI:http://dx.doi.org/10.1145/2043556.2043587

Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from mistakes: A comprehensive
study on real world concurrency bug characteristics. In Proceedings of the 13th International Conference

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

http://dx.doi.org/10.1145/ ignorespaces 78969.78972
http://dx.doi.org/10.1145/ ignorespaces 78969.78972
http://dx.doi.org/ ignorespaces 10.1145/1882291.1882323
http://dx.doi.org/ ignorespaces 10.1145/1882291.1882323
http://dx.doi.org/ ignorespaces 10.1145/2594291.2594315
http://dx.doi.org/ ignorespaces 10.1145/2594291.2594315
http://dx.doi.org/10.1145/2786805.2786840
http://dl.acm.org/citation.cfm?id$=$2041552.2041567
http://dx.doi.org/10.1145/ ignorespaces 2491956.2462167
http://dx.doi.org/10.1145/ ignorespaces 2491956.2462167
http://dx.doi.org/10.1145/ ignorespaces 1882291.1882302
http://dx.doi.org/10.1145/ ignorespaces 1882291.1882302
http://dx.doi.org/10.1145/2568225.2568236
http://dx.doi.org/10.1145/1869459.1869481
http://dx.doi.org/10.1145/1993498.1993550
http://dx.doi.org/10.1145/2815400.2815412
http://dx.doi.org/10.1145/2150976.2150997
http://dx.doi.org/10.1145/2771783.2771798
http://dx.doi.org/10.1145/360248.360252
http://dx.doi.org/10.1145/ ignorespaces 1328438.1328461
http://dx.doi.org/10.1145/ ignorespaces 1328438.1328461
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1145/2043556.2043587

14:36 N. Machado et al.

on Architectural Support for Programming Languages and Operating Systems (ASPLOS XIII). ACM,
New York, NY, 329–339. DOI:http://dx.doi.org/10.1145/1346281.1346323

Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. 2006. AVIO: Detecting atomicity violations via
access interleaving invariants. In Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS XII). ACM, New York, NY,
37–48. DOI:http://dx.doi.org/10.1145/1168857.1168864

Brandon Lucia and Luis Ceze. 2009. Finding concurrency bugs with context-aware communication graphs.
In Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
42). ACM, New York, NY, 553–563. DOI:http://dx.doi.org/10.1145/1669112.1669181

Brandon Lucia and Luis Ceze. 2013. Cooperative empirical failure avoidance for multithreaded programs.
In Proceedings of the 18th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS’13). ACM, New York, NY, 39–50. DOI:http://dx.doi.org/10.1145/
2451116.2451121

Brandon Lucia, Luis Ceze, and Karin Strauss. 2010. ColorSafe: Architectural support for debug-
ging and dynamically avoiding multi-variable atomicity violations. In Proceedings of the 37th An-
nual International Symposium on Computer Architecture (ISCA’10). ACM, New York, NY, 222–233.
DOI:http://dx.doi.org/10.1145/ 1815961.1815988

Brandon Lucia, Joseph Devietti, Karin Strauss, and Luis Ceze. 2008. Atom-aid: Detecting and surviving
atomicity violations. In Proceedings of the 35th Annual International Symposium on Computer Ar-
chitecture (ISCA’08). IEEE Computer Society, Washington, DC, 277–288. DOI:http://dx.doi.org/10.1109/
ISCA.2008.4

Brandon Lucia, Benjamin P. Wood, and Luis Ceze. 2011. Isolating and understanding concurrency er-
rors using reconstructed execution fragments. In Proceedings of the 32nd ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI’11). ACM, New York, NY, 378–388.
DOI:http://dx.doi.org/ 10.1145/1993498.1993543

Nuno Machado, Paolo Romano, and Luis Rodrigues. 2012. Lightweight cooperative logging for fault repli-
cation in concurrent programs. In IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN’12). IEEE Computer Society, Washington, DC, 1–12.

Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Piramanayagam Arumuga Nainar, and
Iulian Neamtiu. 2008. Finding and reproducing Heisenbugs in concurrent programs. In Proceedings
of the 8th USENIX Conference on Operating Systems Design and Implementation (OSDI’08). USENIX
Association, Berkeley, CA, 267–280.

Satish Narayanasamy, Zhenghao Wang, Jordan Tigani, Andrew Edwards, and Brad Calder. 2007. Automat-
ically classifying benign and harmful data races using replay analysis. In Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI’07). ACM, New
York, NY, 22–31. DOI:http://dx.doi.org/10.1145/1250734.1250738

Marek Olszewski, Jason Ansel, and Saman Amarasinghe. 2009. Kendo: Efficient deterministic multithread-
ing in software. In Proceedings of the 14th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS XIV). ACM, Washington, DC, USA, 97–108.

Sangmin Park, Richard W. Vuduc, and Mary Jean Harrold. 2010. Falcon: Fault localization in concurrent
programs. In Proceedings of the 32Nd ACM/IEEE International Conference on Software Engineering -
Volume 1 (ICSE’10). ACM, New York, NY, 245–254. DOI:http://dx.doi.org/10.1145/1806799.1806838

Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin, Rini Kaushik, Kyu H. Lee, and Shan Lu. 2009.
PRES: Probabilistic replay with execution sketching on multiprocessors. In Proceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems Principles (SOSP’09). ACM, New York, NY, 177–192.
DOI:http://dx.doi.org/10.1145/1629575.1629593

Shaz Qadeer. 2009. Algorithmic verification of systems software using SMT solvers. In Proceedings
of the 16th International Symposium on Static Analysis (SAS’09). Springer-Verlag, Berlin, 2–2.
DOI:http://dx.doi.org/10.1007/978-3-642-03237-0_2

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson. 1997. Eraser:
A dynamic data race detector for multi-threaded programs. In Proceedings of the Sixteenth ACM Sym-
posium on Operating Systems Principles (SOSP’97). ACM, New York, NY, 27–37. DOI:http://dx.doi.org/
10.1145/268998.266641

Koushik Sen. 2008. Race directed random testing of concurrent programs. In Proceedings of the 29th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI’08). ACM, New
York, NY, 11–21. DOI:http://dx.doi.org/10.1145/1375581.1375584

Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A concolic unit testing engine for C. In Pro-
ceedings of the 10th European Software Engineering Conference Held Jointly with 13th ACM SIGSOFT

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

http://dx.doi.org/10.1145/1346281.1346323
http://dx.doi.org/10.1145/1168857.1168864
http://dx.doi.org/10.1145/1669112.1669181
http://dx.doi.org/10.1145/ ignorespaces 2451116.2451121
http://dx.doi.org/10.1145/ ignorespaces 2451116.2451121
http://dx.doi.org/10.1145/ ignorespaces 1815961.1815988
http://dx.doi.org/10.1109/ ignorespaces ISCA.2008.4
http://dx.doi.org/10.1109/ ignorespaces ISCA.2008.4
http://dx.doi.org/ ignorespaces 10.1145/1993498.1993543
http://dx.doi.org/10.1145/1250734.1250738
http://dx.doi.org/10.1145/1806799.1806838
http://dx.doi.org/10.1145/1629575.1629593
http://dx.doi.org/10.1007/978-3-642-03237-0_2
http://dx.doi.org/ ignorespaces 10.1145/268998.266641
http://dx.doi.org/ ignorespaces 10.1145/268998.266641
http://dx.doi.org/10.1145/1375581.1375584

Concurrency Debugging with Differential Schedule Projections 14:37

International Symposium on Foundations of Software Engineering (ESEC/FSE-13). ACM, New York,
NY, 263–272. DOI:http://dx.doi.org/10.1145/1081706.1081750

Yao Shi, Soyeon Park, Zuoning Yin, Shan Lu, Yuanyuan Zhou, Wenguang Chen, and Weimin Zheng. 2010. Do
I use the wrong definition? DeFuse: Definition-use invariants for detecting concurrency and sequential
bugs. In Proceedings of the ACM International Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA’10). ACM, New York, NY, 160–174. DOI:http://dx.doi.org/10.1145/
1869459.1869474

John Steven, Pravir Chandra, Bob Fleck, and Andy Podgurski. 2000. jRapture: A capture/replay tool for
observation-based testing. In Proceedings of the 2000 ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA’00). ACM, New York, NY, 158–167.

Nikolai Tillmann and Jonathan De Halleux. 2008. Pex: White box test generation for .NET. In Proceedings
of the 2nd International Conference on Tests and Proofs (TAP’08). Springer-Verlag, Berlin, 134–153.

Joseph Tucek, Shan Lu, Chengdu Huang, Spiros Xanthos, and Yuanyuan Zhou. 2007. Triage: Diagnos-
ing production run failures at the user’s site. In Proceedings of 21st ACM SIGOPS Symposium on
Operating Systems Principles (SOSP’07). ACM, New York, NY, 131–144. DOI:http://dx.doi.org/10.1145/
1294261.1294275

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sundaresan. 1999.
Soot—A java bytecode optimization framework. In Proceedings of the 1999 Conference of the Centre for
Advanced Studies on Collaborative Research (CASCON’99). IBM Press, 13.

Kapil Vaswani, Matthew J. Thazhuthaveetil, and Y. N. Srikant. 2005. A programmable hardware path
profiler. In Proceedings of the International Symposium on Code Generation and Optimization (CGO’05).
IEEE Computer Society, Washington, DC, 217–228. DOI:http://dx.doi.org/10.1109/CGO.2005.3

Willem Visser, Corina S. Pǎsǎreanu, and Sarfraz Khurshid. 2004. Test input generation with java pathfinder.
In Proceedings of the 2004 ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA’04). ACM, New York, NY, 97–107. DOI:http://dx.doi.org/10.1145/1007512.1007526

Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. 2007. RELAY: Static race detection on millions of lines of
code. In Proceedings of the the 6th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on The Foundations of Software Engineering (ESEC-FSE’07). ACM,
New York, NY, 205–214. DOI:http://dx.doi.org/10.1145/1287624.1287654

Zhemin Yang, Min Yang, Lvcai Xu, Haibo Chen, and Binyu Zang. 2011. ORDER: Object centric deterministic
replay for java. In Proceedings of the 2011 USENIX Conference on USENIX Annual Technical Conference
(USENIXATC’11). USENIX Association, Berkeley, CA, 30–30.

Cristian Zamfir and George Candea. 2010a. Execution synthesis: A technique for automated software de-
bugging. In Proceedings of the 5th European Conference on Computer Systems (EuroSys’10). ACM, New
York, NY, 321–334. DOI:http://dx.doi.org/10.1145/1755913.1755946

Cristian Zamfir and George Candea. 2010b. Low-overhead bug fingerprinting for fast debugging. In Pro-
ceedings of the 1st International Conference on Runtime Verification (RV’10). Springer-Verlag, Berlin,
460–468.

Wei Zhang, Junghee Lim, Ramya Olichandran, Joel Scherpelz, Guoliang Jin, Shan Lu, and Thomas Reps.
2011. ConSeq: Detecting concurrency bugs through sequential errors. In Proceedings of the 16th In-
ternational Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS XVI). ACM, New York, NY, 251–264. DOI:http://dx.doi.org/10.1145/1950365.1950395

Wei Zhang, Chong Sun, and Shan Lu. 2010. ConMem: Detecting severe concurrency bugs through an
effect-oriented approach. In Proceedings of the 15th Edition of ASPLOS on Architectural Support
for Programming Languages and Operating Systems (ASPLOS XV). ACM, New York, NY, 179–192.
DOI:http://dx.doi.org/10.1145/1736020.1736041

Jinguo Zhou, Xiao Xiao, and Charles Zhang. 2012. Stride: Search-based deterministic replay in polynomial
time via bounded linkage. In Proceedings of the 34th International Conference on Software Engineering
(ICSE’12). IEEE Press, Piscataway, NJ, 892–902.

Daniele Zuddas, Wei Jin, Fabrizio Pastore, Leonardo Mariani, and Alessandro Orso. 2014. MIMIC: Locating
and understanding bugs by analyzing mimicked executions. In Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering (ASE’14). ACM, New York, NY, 815–826.
DOI:http://dx.doi.org/10.1145/2642937.2643014

Received June 2015; revised December 2015; accepted January 2016

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 2, Article 14, Publication date: April 2016.

http://dx.doi.org/10.1145/1081706.1081750
http://dx.doi.org/10.1145/ ignorespaces 1869459.1869474
http://dx.doi.org/10.1145/ ignorespaces 1869459.1869474
http://dx.doi.org/10.1145/ ignorespaces 1294261.1294275
http://dx.doi.org/10.1145/ ignorespaces 1294261.1294275
http://dx.doi.org/10.1109/CGO.2005.3
http://dx.doi.org/10.1145/1007512.1007526
http://dx.doi.org/10.1145/1287624.1287654
http://dx.doi.org/10.1145/1755913.1755946
http://dx.doi.org/10.1145/1950365.1950395
http://dx.doi.org/10.1145/1736020.1736041
http://dx.doi.org/10.1145/2642937.2643014

